--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: oc-01-distilbert-finetuned results: [] --- # oc-01-distilbert-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0061 - Validation Loss: 0.4666 - Train Recall: 0.9070 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Recall | Epoch | |:----------:|:---------------:|:------------:|:-----:| | 0.3386 | 0.2557 | 0.8915 | 0 | | 0.1989 | 0.2661 | 0.9283 | 1 | | 0.1097 | 0.2809 | 0.9244 | 2 | | 0.0716 | 0.3101 | 0.9244 | 3 | | 0.0310 | 0.4023 | 0.8721 | 4 | | 0.0288 | 0.4877 | 0.9535 | 5 | | 0.0155 | 0.3834 | 0.9109 | 6 | | 0.0105 | 0.4263 | 0.9012 | 7 | | 0.0095 | 0.4746 | 0.9070 | 8 | | 0.0061 | 0.4666 | 0.9070 | 9 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3