File size: 62,680 Bytes
16c59c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@5
- cosine_precision@10
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@5
- cosine_map@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CoSENTLoss
- dataset_size:7232
- loss:WeightedMultipleNegativesRankingLoss
widget:
- source_sentence: ', antenna, or other sensor to attain mission performance levels
    that

    currently cannot be achieved by a monolithic satellite. Most aspects of this concept
    have been widely studied, but

    the first implementation has yet to be realized, with the exception of a few initial
    experiments.

    A distributed satellite system taxonomy is shown in Fig. 1 with a discussion of
    current and planned systems to

    follow. At the end of this section, a candidate distributed space mission is presented
    as a common reference for

    Table 1 presents a selection of current distributed satellite systems, grouped
    in the four typical mission

    categories'
  sentences:
  - 'What is the precision that the system is aiming for in terms of tracking error?


    '
  - 'What is the main challenge in implementing a distributed satellite system?


    '
  - 'Who are the authors of the NASA document "Space Radiation Cancer Risk Projections
    for Explorative Missions: Uncertainty Reduction and Mitigation"?


    '
- source_sentence: ':250,000 scale for regional context) . Near-term efforts should
    focus on high-priority locations .

    [16] Terrain hazard (e .g ., slope, surface roughness), line-of-sight (i .e .,
    viewshed), and time-dependent

    illumination maps at appropriate scales (e .g ., best-available supported by the
    data) are high-priority derived products essential in mission planning, and they
    should be made available as soon as possible .

    [17] South polar data products could be initially controlled to coarser data and
    known surface reference points to support early Artemis missions and other surface
    activities, but establishment of a local control network applied to all necessary
    data layers would facilitate interoperability and provide more precision for specific
    sites .

    Higher-order data products are tied to controlled foundational data and are derived
    from source data, such as measurements of elemental abundance, temperature or
    reflectance at multiple wavelengths, observations of solar illumination, and output
    from space weather models . Higher-order data products derived from these source
    data will play an essential role in planning and executing south polar missions
    . Planning the science activities to be carried out on the lunar surface will
    be based on these higher-order data products, and, in turn, the science returned
    by those activities will be used to update those same products . For example,
    geologic maps based on remotely sensed data prior to early Artemis landings will
    be a likely outcome of site assessments and will form the critical basis for traverse
    plans and planning of science tasks . The observations, samples, and measurements
    made during Artemis surface activities will feed back into updating the geologic
    maps, to the benefit of future crewed or robotic missions to the same area . Similarly,
    resource maps will drive the selection of landing sites for missions focused on
    resource discovery, characterization, and utilization, and the findings of those
    missions will be used to iteratively update the resource maps . In these cases,
    and others'
  sentences:
  - 'What are the specifications of the Theia imager that make it suitable for quantitative
    remote sensing studies?


    '
  - 'Who supported the first study?


    '
  - 'What are the essential derived products in mission planning, and why are they
    crucial for south polar missions?


    '
- source_sentence: ', there are still

    some challenges to be overcome it is shown that it is possible to perform such
    links. Furthermore,

    recommendations for future operations of optical links were provided.

    FLP is also integrated in the educational aspects of the Institute. Many future
    aerospace engineers were

    trained for satellite operations and Earth Observations and the satellite will
    be used to train operators

    Further investigation of the Attitude Control is required for the stabilization
    of the optical links on

    other G/S as Oberpfaffenhofen. However, future projects might benefit from more
    standardization on

    the side of G/S Feedback for optical links. Overall Flying Laptop is a stable
    platform for technology demonstration, Earth Observation, and ed-

    588. [Online]. Available'
  sentences:
  - 'What are the remaining challenges that need to be addressed for the successful
    implementation of optical links?


    '
  - 'What are the benefits of enhancing the radiometric resolution of VLEO satellite
    systems?


    '
  - 'What is the reason for using the uncoupled approach for the radiation calculations
    in this study?


    '
- source_sentence: ': they are visible on the waterfall plots with a very high amplitude.
    Moreover, some peaks appear on waterfall plots while they are not

    visible on zero speed curves. These peaks correspond to first order unbalance,
    engine orders or wheel eigenmodes. By repeating the tests with different configurations
    (without ventilation, changing the axes, etc...), conclusions have been made and
    are presented in table 4.

    It is necessary to check if the modes presented in table 4 do not cross the order
    1 unbalance or the rocking mode. The visible lines starting from the origin and
    evolving with the rotation speed of the wheel are the engine orders due to the
    imperfections of the wheel. When they cross modes of the wheel, the amplitudes
    corresponding to the crossing are much higher as we can clearly see in Table 2,
    on the x axis waterfall plots at 1050 Hz and 4000 RPM. The waterfall plots allow
    to have a global view on the wheel structure. By looking at these curves, two
    wheels can be compared. For example, higher amplitudes on engine orders mean that
    the wheel has defects. Moreover, a shift of the rocking mode means that the parameters
    of the wheel are different as shown in equations 4.

    Table 3 summarizes the static and dynamic unbalances calculated on three wheels.
    We notice that they all have the same order of magnitude. Environmental vibration
    and shock tests can vary this value by damaging the wheel. On the other hand,
    bearing defects can be reduced when the wheel is continuously rotated due to the
    running-in process, which can decrease the unbalance value. In general, environmental
    testing has more impact than running-in.

    When the frequencies are low, the wheel has no trouble following the setpoint.
    At high frequencies, the wheel follows the setpoint but with a loss of amplitude
    and a phase shift'
  sentences:
  - 'What are the peaks that appear on waterfall plots but not on zero speed curves?


    '
  - 'Why is separately scheduling the imaging and download tasks a natural choice
    for real-world complex systems?


    '
  - 'What are the dominant orbit determination uncertainties?


    '
- source_sentence: ': Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX
    slice has two serializers and its own PLL.

    The CCD bands operate continuously and time interleaved. The output stages for
    the CCD arrays are implemented both at the top and bottom of each band to support
    the bi-directional operation. All 14 output stages in one column are connected
    to one delta-sigma column-level ADC with digital CDS implemented in the digital
    decimator. The outputs of every 128 ADCs are serialized to one of 32 LVDS outputs.
    Two clock signals are also provided via LVDS to synchronize the channels. These
    outputs are capable of running at an aggregate data rate of >50Gb/s using on-chip
    PLLs.

    The sensor has been processed for Back-Side Illumination and it has been packaged
    in a custom ceramic PGA package. Figure 15 shows a picture of the sensor with
    its 7 bands. The figure shows the front-side and back-side versions of the chip
    side by side.

    (a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only for
    reference (a) and BSI version (b).

    As a proof-of-concept, an RGB butcher-brick filter has been used as glass lid
    for the sensor, to enable multicolor TDI, although filters may be processed directly
    on the wafer as well [9]. The sensor,

    camera system and a color image captured from the setup are depicted in Figure
    16, providing evidence that multispectral TDI is viable with the sensor.

    Figure 16: Colour TDI image captured from the sensor, sensor with RGB color filter
    and camera set-up.

    Table 3 below shows a comparison of different TDI sensors, including the first
    iteration of our sensor.

    Integrated drivers

    The measurements on the first iteration of the SoC verified'
  sentences:
  - 'What is the primary objective of the Zodiac Pioneer Mission?


    '
  - 'What is the main topic of the papers listed in the context?


    '
  - 'What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS TDI
    sensor?


    '
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@5
      value: 0.8407960199004975
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8843283582089553
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.16815920398009948
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08843283582089552
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.8407960199004975
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8843283582089553
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.749593576396566
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7638900783774348
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.7189676616915421
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.7249965450525153
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.7189676616915422
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.7249965450525152
      name: Cosine Map@10
    - type: cosine_accuracy@5
      value: 0.9198717948717948
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9551282051282052
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.18397435897435896
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0955128205128205
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.9198717948717948
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9551282051282052
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.786039298615645
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7975208279742617
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.740758547008547
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.7455369861619862
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.740758547008547
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.7455369861619863
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@5
      value: 0.8345771144278606
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8781094527363185
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.16691542288557212
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08781094527363183
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.8345771144278606
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8781094527363185
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.7384076037005772
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7524024562602603
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.7060530679933663
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.7117739674642659
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.7060530679933666
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.7117739674642659
      name: Cosine Map@10
    - type: cosine_accuracy@5
      value: 0.907051282051282
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9519230769230769
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.1814102564102564
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09519230769230767
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.907051282051282
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9519230769230769
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.7793612708940784
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7942949173487753
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.7363247863247866
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.7427375864875867
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.7363247863247864
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.7427375864875865
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@5
      value: 0.8146766169154229
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8631840796019901
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.16293532338308458
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08631840796019902
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.8146766169154229
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8631840796019901
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.7159371426767726
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.731814701526023
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.6826907131011605
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.6893587617468213
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.6826907131011608
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.6893587617468214
      name: Cosine Map@10
    - type: cosine_accuracy@5
      value: 0.8846153846153846
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9455128205128205
      name: Cosine Accuracy@10
    - type: cosine_precision@5
      value: 0.1769230769230769
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09455128205128205
      name: Cosine Precision@10
    - type: cosine_recall@5
      value: 0.8846153846153846
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9455128205128205
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.7547512036424451
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7747939646301274
      name: Cosine Ndcg@10
    - type: cosine_mrr@5
      value: 0.7107905982905985
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.7192778286528287
      name: Cosine Mrr@10
    - type: cosine_map@5
      value: 0.7107905982905982
      name: Cosine Map@5
    - type: cosine_map@10
      value: 0.7192778286528286
      name: Cosine Map@10
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co./Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co./Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("federicovolponi/Snowflake-snowflake-arctic-embed-m-space-sup")
# Run inference
sentences = [
    ': Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX slice has two serializers and its own PLL.\nThe CCD bands operate continuously and time interleaved. The output stages for the CCD arrays are implemented both at the top and bottom of each band to support the bi-directional operation. All 14 output stages in one column are connected to one delta-sigma column-level ADC with digital CDS implemented in the digital decimator. The outputs of every 128 ADCs are serialized to one of 32 LVDS outputs. Two clock signals are also provided via LVDS to synchronize the channels. These outputs are capable of running at an aggregate data rate of >50Gb/s using on-chip PLLs.\nThe sensor has been processed for Back-Side Illumination and it has been packaged in a custom ceramic PGA package. Figure 15 shows a picture of the sensor with its 7 bands. The figure shows the front-side and back-side versions of the chip side by side.\n(a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only for reference (a) and BSI version (b).\nAs a proof-of-concept, an RGB butcher-brick filter has been used as glass lid for the sensor, to enable multicolor TDI, although filters may be processed directly on the wafer as well [9]. The sensor,\ncamera system and a color image captured from the setup are depicted in Figure 16, providing evidence that multispectral TDI is viable with the sensor.\nFigure 16: Colour TDI image captured from the sensor, sensor with RGB color filter and camera set-up.\nTable 3 below shows a comparison of different TDI sensors, including the first iteration of our sensor.\nIntegrated drivers\nThe measurements on the first iteration of the SoC verified',
    'What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS TDI sensor?\n\n',
    'What is the primary objective of the Zodiac Pioneer Mission?\n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@5   | 0.8408    |
| cosine_accuracy@10  | 0.8843    |
| cosine_precision@5  | 0.1682    |
| cosine_precision@10 | 0.0884    |
| cosine_recall@5     | 0.8408    |
| cosine_recall@10    | 0.8843    |
| cosine_ndcg@5       | 0.7496    |
| cosine_ndcg@10      | 0.7639    |
| cosine_mrr@5        | 0.719     |
| cosine_mrr@10       | 0.725     |
| cosine_map@5        | 0.719     |
| **cosine_map@10**   | **0.725** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@5   | 0.8346     |
| cosine_accuracy@10  | 0.8781     |
| cosine_precision@5  | 0.1669     |
| cosine_precision@10 | 0.0878     |
| cosine_recall@5     | 0.8346     |
| cosine_recall@10    | 0.8781     |
| cosine_ndcg@5       | 0.7384     |
| cosine_ndcg@10      | 0.7524     |
| cosine_mrr@5        | 0.7061     |
| cosine_mrr@10       | 0.7118     |
| cosine_map@5        | 0.7061     |
| **cosine_map@10**   | **0.7118** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@5   | 0.8147     |
| cosine_accuracy@10  | 0.8632     |
| cosine_precision@5  | 0.1629     |
| cosine_precision@10 | 0.0863     |
| cosine_recall@5     | 0.8147     |
| cosine_recall@10    | 0.8632     |
| cosine_ndcg@5       | 0.7159     |
| cosine_ndcg@10      | 0.7318     |
| cosine_mrr@5        | 0.6827     |
| cosine_mrr@10       | 0.6894     |
| cosine_map@5        | 0.6827     |
| **cosine_map@10**   | **0.6894** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@5   | 0.9199     |
| cosine_accuracy@10  | 0.9551     |
| cosine_precision@5  | 0.184      |
| cosine_precision@10 | 0.0955     |
| cosine_recall@5     | 0.9199     |
| cosine_recall@10    | 0.9551     |
| cosine_ndcg@5       | 0.786      |
| cosine_ndcg@10      | 0.7975     |
| cosine_mrr@5        | 0.7408     |
| cosine_mrr@10       | 0.7455     |
| cosine_map@5        | 0.7408     |
| **cosine_map@10**   | **0.7455** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@5   | 0.9071     |
| cosine_accuracy@10  | 0.9519     |
| cosine_precision@5  | 0.1814     |
| cosine_precision@10 | 0.0952     |
| cosine_recall@5     | 0.9071     |
| cosine_recall@10    | 0.9519     |
| cosine_ndcg@5       | 0.7794     |
| cosine_ndcg@10      | 0.7943     |
| cosine_mrr@5        | 0.7363     |
| cosine_mrr@10       | 0.7427     |
| cosine_map@5        | 0.7363     |
| **cosine_map@10**   | **0.7427** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@5   | 0.8846     |
| cosine_accuracy@10  | 0.9455     |
| cosine_precision@5  | 0.1769     |
| cosine_precision@10 | 0.0946     |
| cosine_recall@5     | 0.8846     |
| cosine_recall@10    | 0.9455     |
| cosine_ndcg@5       | 0.7548     |
| cosine_ndcg@10      | 0.7748     |
| cosine_mrr@5        | 0.7108     |
| cosine_mrr@10       | 0.7193     |
| cosine_map@5        | 0.7108     |
| **cosine_map@10**   | **0.7193** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 7,232 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 354.69 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 19.21 tokens</li><li>max: 40 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                                       |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
  | <code>, using diverse software or hardware designs may double design and verification costs due to having to build two different components for the same functionality. Hence, although DCLS execution also halves performance efficiency (the corresponding functionality is executed twice), it allows reusing the same design (e.g. the same core design) for the primary and the redundant paths (e.g. with staggered execution), thus containing design and verification costs.<br>Redundancy can be applied at different granularities accord- ing to the sphere of replication (SoR). Choosing the right SoR depends on several tradeoffs like area overheads, re- design costs, fault detection time, and overall system costs. In the context of DCLS, the SoR is placed at the level of the CPU (core), as done for the AURIX processors. This requires including two replicas of the same core and compare their memory transactions, which requires roughly duplicating com- putational resources in the chip and being able to ensure that replicas can provide independent behavior. On the other hand, storage (memories, caches) and communication means (buses, crossbars) do not need to be fully replicated and can build upon Error Correction Codes (ECC) and Cyclic Redundancy Check (CRC) as a form of lightweight redundancy with diversity.<br>HPC ASIL-D capable platforms typically combine a low- performance microcontroller amenable for the automotive do- main (i.e. ASIL-D capable) and an HPC accelerator deliv- ering high computation throughput, but whose adherence to ISO26262 requirements is unknown, so its appropriate use for ASIL-C/D systems needs to be investigated. Without loss of generality, we consider an NVIDIA GPU accelerator, thus analogous to those in NVIDIA Drive and Xavier families for the automotive domain. However, the findings in this paper can easily be extrapolated to other products.<br>Software faults and some hardware faults are regarded as systematic, and it must be proven that their failure risk is residual. However, random hardware faults cannot be avoided, and means are required to prevent them from causing hazards. Those faults can be caused by, for example, voltage droops</code>                                                                                                                                                                                                                                                                                                                                                                                           | <code>What are the advantages of using the same design for the primary and redundant paths in DCLS execution?<br><br></code> |
  | <code>: First, the TT&C spectrum requirements of the new satellites shall be assessed. Second, the utilization of existing TT&C frequency allocations and their potential to incorporate the future number of satellites is studied. Only for the case that this study results in the need for new spectrum, the study groups were asked to investigate new potential TT&C frequency allocations in the frequency ranges 150.05-174 MHz and 400.15-420 MHz. The studies shall be completed for WRC-19.<br>This paper presents the intermediate results of the study groups. A study of the spectrum requirements of small satellites has been completed. The required spectrum for TT&C is expected to be less than 2.5 MHz for downlink and less than 1 MHz for uplink. Consequently, the study groups conducted sharing studies in various bands which will be summarized and evaluated from a satellite developer’s perspective.<br>After the Cubesat design standard was introduced in 1999 and first satellites of this new class have been launched in the subsequent years, small satellites have become increasingly popular in the past five years. Today not only universities use small satellite platforms for education and technology demonstration, but also commercial operators started to develop and deploy satellites with masses of typically less than 50 kg and reasonably short development times. Currently more than hundred new satellites are currently launched into space per year. The increase of launches was recognized by the International Telecommunication Union (ITU) which is responsible for the coordination of the shared use of frequencies. As the first Cubesats were mainly launched by new entrants into the space sector, mandatory regulatory procedures like frequency coordination were omitted or underestimated by the developers. Additionally, the new developers complaint that the existing regulatory procedures are too complicated and time-consuming for satellites with short development times. The ITU therefore decided at the WRC-12 to study the characteristics of picosatellites and nanosatellites and their current practice in filing satellites to the ITU. The studies were concluded in 2015 with two reports on the characteristics [1] and current filing practice [2]. In these reports it was identified that the characteristics that define small satellites (low mass, small dimensions, low power, …) are not relevant from a frequency coordination perspective and that the short development times are still long enough to properly file the systems to the ITU. As a result</code> | <code>What are the spectrum requirements for TT&C of small satellites?<br><br></code>                                        |
  | <code>:287–299, Dec 2019.<br>[20] Tam´as Vink´o and Dario Izzo. Global optimi- sation heuristics and test problems for prelimi- nary spacecraft trajectory design. Technical re- port, 2008.<br>[21] Matej Petkovic, Luke Lucas, Dragi Kocev, Saˇso Dˇzeroski, Redouane Boumghar, and Nikola Simidjievski. Quantifying the effects of gyro- less flying of the mars express spacecraft with machine learning. In 2019 IEEE International<br>[22] Janhavi H. Borse, Dipti D. Patil, Vinod Kumar, and Sudhir Kumar. Soft landing parameter measurements for candidate navigation trajec- tories using deep learning and ai-enabled plan- etary descent. Mathematical Problems in Engi- neering, 2022</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>What are some of the research topics and methods explored in the provided references?<br><br></code>                   |
* Loss: <code>losses.WeightedMultipleNegativesRankingLoss</code> with these parameters:
  ```json
  {
      "scale": 20,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 804 evaluation samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 351.15 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 19.36 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anchor                                                                                                                                      |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>, the total number of test thermocouples has been rationalized taking into account redundancy needs, accommodation constraints and hardware passivation needs for flight. The test is subdivided into 19 phases (see Figure 12) with two phases before and after the test for the health check functional tests under room conditions. Functional tests demonstrate anomalies such as the PCDU Reset and operational malfunctions of the RAX instrument at its high temperatures. The PCDU Reset anomaly was solved during the test by a software patch and validated during the final hot and cold plateaus. To address the RAX anomaly at hot, various test configurations were simulated using the thermal numerical model during the test to actually perform RAX functional test at an intermediate plateau facilitating mission operational constraints for flight. Data collected from hot and cold thermal balance test phases, as well as the rover OFF transition from hot to cold, are the inputs for correlation activities conducted post-TV/TB test. The thermal numerical model updates mainly focus on conductive couplings</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>What was the solution to the PCDU Reset anomaly during the test?<br><br></code>                                                       |
  | <code>, where +Z axis orients to the earth, and sun pointing attitude mode during day time<br>orienting -Z axis to the sun. Therefore, attitude control subsystem is required to maneuver the satellite attitude twice per revolution around its pitch axis. Figure 6 shows concept of the attitude maneuverer. Another attitude maneuverer is necessary to perform SAR observation and SAR data download to a to ground station, because X-band transmit antenna is oriented to +Z, so the satellite has to offset its attitude to orient the X-band transmit antenna toward the ground station.<br>3.4 High pointing accuracy<br>Disturbance torque and system momentum profiles during few revolutions were estimated as shown in Figure 7 and 8. Four micro reaction wheels, which can respond to these profiles were selected which enable attitude maneuvers within a short period of time. In order to perform a pitch attitude maneuver quickly, two wheels are located on pitch axis while one wheel was located on each of the remaining roll and yaw axes. Figure 9 shows the satellite attitudes during SAR observation. There are three kinds of attitude, strip map mode, sliding spot light mode, and spotlight mode. Large change of momentum is required for pitch axis when the satellite is in spotlight mode. However, two pitch reaction wheels do not generate enough momentum to execute spotlight mode. So, sliding spotlight mode was selected for high resolution SAR observation mode instead of spotlight mode, in order to relax the torque and momentum requirements to the pitch wheels. In addition, two pitch<br>Figure 7. Disturbance torque profile Figure 8. System momentum profile<br>reaction wheels are accelerated to plus direction or minus direction by using magnet torque before observation. In order to obtain a high resolution SAR data, high attitude control accuracy is required for spotlight mode observation. To achieve high pointing accuracy against a defined ground target point, the attitude control loop applied feed forward compensation with estimated attitude angle and rate. Figure 10 shows an example of dynamic error during a spotlight mode observation maneuver.[4]<br>Equipment for SAR mission consumes total large power more than 1300W, therefore PCDU has a risk of causing electrical and RF influence to the bus power and signal line. In order to research the system, electrical interface check was performed using bread board model of PCDU, battery</code> | <code>What is the reason for selecting sliding spotlight mode instead of spotlight mode for high resolution SAR observation?<br><br></code> |
  | <code>, body shape and motion assumptions. Then, ORSAT uses DCA to determine the reentry risk posed to the Earth’s<br>population based on the year of reentry and orbit inclination. It also predicts impact kinetic energy (impact velocity and impact mass) of objects that survive reentry[18]. ORSAT has been in use for the last decade and currently in its 6.0 version. However, unlike DAS, OR-<br>SAT is not readily available. Only personnel at the Johnson Space Center, Orbital Debris Program Office run ORSAT. ORSAT is limited to ballistic reentry, only tumbling motions or<br>stable orientations of objects are allowed which produce no lift. Partial melting of objects is considered by a demise factor and almost all materials in the database are temperature de- pendent. Heating by oxidation is also considered [20]. Therefore, ORSAT determines when<br>and if a reentry object demises by using integrated trajectory, atmospheric, aerodynamic, aero-thermodynamic, and thermal models as outlined in section 3.1 [17, 18, 20].<br>Reentry demisability analysis using DAS requires the spacecraft to be defined to the level of each individual hardware part constituting the spacecraft. This step facilitates population<br>of the DAS Spacecraft Definition Module . Section 3.2.1 illustrates a generic spacecraft subdivision approach that can be followed to itemize the individual parts spacecraft parts.<br>Subsequently, non-demisable parts are identified before or by the actual reentry analysis as explained in section 3.2.2.<br>Itemization of the demisable spacecraft basic parts can be best approached by decompos- ing the spacecraft according to the Hierarchical System Terminology defined in the NASA Systems Engineering Handbook [14]. Tables 3.2, 3.3 and 3.4 illustrate a generic approach<br>to decompose a spacecraft into basic parts [29, 30, 9] excluding the payload. Description of the specific product for the basic part identified completes the process. Though slight vari-<br>ations are likely to occur in the decomposition of different missions, the Generic Spacecraft Subsystems Hierarchical Subdivision approach is robust, hence</code>                                                                                                                                                                                                                                                                                                                              | <code>What is the limitation of ORSAT in terms of object motion?<br><br></code>                                                             |
* Loss: <code>losses.WeightedMultipleNegativesRankingLoss</code> with these parameters:
  ```json
  {
      "scale": 20,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 3e-06
- `weight_decay`: 0.001
- `num_train_epochs`: 20
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | dim_256_cosine_map@10 | dim_512_cosine_map@10 | dim_768_cosine_map@10 |
|:------:|:----:|:-------------:|:------:|:---------------------:|:---------------------:|:---------------------:|
| 0.4425 | 100  | 0.5883        | -      | -                     | -                     | -                     |
| 0.8850 | 200  | 0.2765        | -      | -                     | -                     | -                     |
| 1.3274 | 300  | 0.2047        | -      | -                     | -                     | -                     |
| 1.7699 | 400  | 0.1628        | -      | -                     | -                     | -                     |
| 2.2124 | 500  | 0.1519        | 0.1204 | 0.7094                | 0.7271                | 0.7266                |
| 2.6549 | 600  | 0.1309        | -      | -                     | -                     | -                     |
| 3.0973 | 700  | 0.1228        | -      | -                     | -                     | -                     |
| 3.5398 | 800  | 0.1062        | -      | -                     | -                     | -                     |
| 3.9823 | 900  | 0.097         | -      | -                     | -                     | -                     |
| 4.4248 | 1000 | 0.0853        | 0.1026 | 0.7281                | 0.7409                | 0.7468                |
| 4.8673 | 1100 | 0.086         | -      | -                     | -                     | -                     |
| 5.3097 | 1200 | 0.0723        | -      | -                     | -                     | -                     |
| 5.7522 | 1300 | 0.0678        | -      | -                     | -                     | -                     |
| 6.1947 | 1400 | 0.0655        | -      | -                     | -                     | -                     |
| 6.6372 | 1500 | 0.0583        | 0.0970 | 0.7252                | 0.7479                | 0.7502                |
| 7.0796 | 1600 | 0.0586        | -      | -                     | -                     | -                     |
| 7.5221 | 1700 | 0.0521        | -      | -                     | -                     | -                     |
| 7.9646 | 1800 | 0.049         | -      | -                     | -                     | -                     |
| 8.4071 | 1900 | 0.0437        | -      | -                     | -                     | -                     |
| 8.8496 | 2000 | 0.0443        | 0.0974 | 0.7193                | 0.7427                | 0.7455                |


### Framework Versions
- Python: 3.12.0
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### WeightedMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->