{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f911860c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736195308451272565, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMT3j3s+f65sT8/OZFevjQsLTE6Az5huAAAAAAAAIA/zdu+vFIQ8bkcKC24tvbBszwOtjlUNUs3AACAPwAAgD8AS4U84ZSkuoQMjjt7cXM3NaGgulPcWzYAAIA/AACAP2Ya2LuKOLA/A5o/vTAZIb7D3Yq8aqxXvQAAAAAAAAAAAMPMPVg1qz5tbUG8W6V6vqteDLw2+F69AAAAAAAAAAAze1C8w8lrutMsejqmEb20JNCMOmeSkrkAAIA/AACAPwAWVDyuJaC6uC06ukIsPLV/lrG50i1WOQAAgD8AAIA/DavTPa6NpLrLTeC2yYu+sYZNMLquAAI2AACAPwAAgD8zSIa90z0wP5BYoj1881m+WHJdPS4HVL0AAAAAAAAAADPVfzxcL166/cGuNtWoI7G6u/W6oD/HtQAAgD8AAIA/mtWSu+FoiLrKD6k6Bp2YNXnIQrtwysS5AACAPwAAgD+aqZU9XG9juibKvbsWIBs4MpXxOj5e1TYAAIA/AACAP1p4iz3DCRq6fXtYtjPDOjB930W7gR+FNQAAgD8AAIA/xkGKvn+qKz9oBuc91SqIvsulH70l71Y8AAAAAAAAAACa4XQ8KSw8ukrXWThwEQQ0KZPBO7KYe7cAAIA/AACAPzNlG74PbVC8WnDvOiF22jkXCbQ9aKOHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyj4KhL5ASMAWyUTf8BjAF0lEdAkcdZDzAerHV9lChoBkdARqiXhOxja2gHTTsBaAhHQJHIS2oegct1fZQoaAZHQGThOg6EJ0JoB03oA2gIR0CRyIsOoYNzdX2UKGgGR0BiebltCRfXaAdN6ANoCEdAkckonWrfcnV9lChoBkdAYycsxwhnrmgHTegDaAhHQJHJnscABDJ1fZQoaAZHQGNjLadtl7NoB03oA2gIR0CRybrn1WbPdX2UKGgGR0BkOSLVFx4qaAdN6ANoCEdAkcpDV6NVBHV9lChoBkdAXtycjJMg2mgHTegDaAhHQJHO5qEeyRl1fZQoaAZHQF5UGYrrgO1oB03oA2gIR0CRz2Wk8A7xdX2UKGgGR0A51/3nIQvpaAdNKQFoCEdAkdZVDjR2KXV9lChoBkdAZHi4BmwqzGgHTegDaAhHQJH35YJVsDZ1fZQoaAZHQGUjy6cy31BoB03oA2gIR0CR+sUyYXwcdX2UKGgGR0BjdfzvqkdnaAdN6ANoCEdAkf6lXA/LT3V9lChoBkdAX2m9XcQAdWgHTegDaAhHQJH/TBpHqeN1fZQoaAZHQGBCck2P1ctoB03oA2gIR0CSACON5t3wdX2UKGgGR0Bl3YFX7tRfaAdN6ANoCEdAkgSjAN5MUXV9lChoBkdAZ317YTTOPmgHTegDaAhHQJIS/s0HhS91fZQoaAZHQG3lzDXOGCZoB02CA2gIR0CSFOtapxWDdX2UKGgGR0BxRCkRBeHBaAdNkgNoCEdAkhUjP0I1L3V9lChoBkdAZIfEZzgdfmgHTegDaAhHQJIZoJE6T4d1fZQoaAZHQGQwL7oB7u5oB03oA2gIR0CSGex0+1SgdX2UKGgGR0BjM6POpsGgaAdN6ANoCEdAkhqLkbPyCnV9lChoBkdAZdyPaL4ve2gHTegDaAhHQJIbIGY8dPt1fZQoaAZHQGIUG7aqS5loB03oA2gIR0CSIYwRGtp3dX2UKGgGR0BiyMka/ATJaAdN6ANoCEdAkiIkqc3ERHV9lChoBkdAbCiH+IdlumgHTV8CaAhHQJImNnSOR1Z1fZQoaAZHQGVZkX+ERJ5oB03oA2gIR0CSLBpPRArydX2UKGgGR7/8ied07r9maAdNJQFoCEdAkkd499tuUHV9lChoBkdAYNFA2ycCo2gHTegDaAhHQJJL3Z9NN8F1fZQoaAZHQF/uvFm4AjpoB03oA2gIR0CSTcdXT3IudX2UKGgGR0BjY/2oNutPaAdN6ANoCEdAklFKufVZtHV9lChoBkdAYKVppN9H+mgHTegDaAhHQJJSxe5WilB1fZQoaAZHQGLCJ9RaX8hoB03oA2gIR0CSV2zSkTHsdX2UKGgGR0BiyXv6TGHYaAdN6ANoCEdAkmjfwZwXInV9lChoBkdAZXGyylenh2gHTegDaAhHQJJqs4Otnwp1fZQoaAZHQGTzIDxLCepoB03oA2gIR0CSauYzBRAKdX2UKGgGR0BkCts+FDfFaAdN6ANoCEdAkm7SNCJGfHV9lChoBkdAYt8eT3Zf2WgHTegDaAhHQJJvE90Rvm51fZQoaAZHQGdL1UEPlMhoB03oA2gIR0CSb6XjENvwdX2UKGgGR0BjX3QQcxTLaAdN6ANoCEdAknA4oZydWnV9lChoBkdAYxtPHDJlrmgHTegDaAhHQJJ2nE4vN/x1fZQoaAZHQGN6tXo1UERoB03oA2gIR0CSenlTm4iHdX2UKGgGR0Beecjmjj7zaAdN6ANoCEdAkn8l5Sm65HV9lChoBkdAUJDB9Cu2Z2gHTS0BaAhHQJKAhjlPrOZ1fZQoaAZHQGKYfNzKcNJoB03oA2gIR0CSnQ5BC2MLdX2UKGgGR0Be+aEzwc5saAdN6ANoCEdAkqEuUliSaHV9lChoBkdAYVSemvW6LGgHTegDaAhHQJKjHikwevJ1fZQoaAZHQF6jXfIjnmtoB03oA2gIR0CSpsHUc4o7dX2UKGgGR0BwDG6K+BYnaAdNnwJoCEdAkqe/EOy3TnV9lChoBkdAYj+yNXHR1GgHTegDaAhHQJKoI5q/M4d1fZQoaAZHQGQTyYw7DEZoB03oA2gIR0CSrFLtNSIhdX2UKGgGR0Bl7V/SYw7DaAdN6ANoCEdAkrnC66J66nV9lChoBkdAYDETmnwXqWgHTegDaAhHQJK7tE8aGYd1fZQoaAZHQGTeNz0Yj0NoB03oA2gIR0CSwDzV+Zw5dX2UKGgGR0BjyNbzK9wnaAdN6ANoCEdAksFbYwqRU3V9lChoBkdAXo+UfPomomgHTegDaAhHQJLCIfigkC51fZQoaAZHQGWEoC+10DFoB03oA2gIR0CSyiyfL9uQdX2UKGgGR0Bhoptk4FRpaAdN6ANoCEdAks4/yf+S83V9lChoBkdAYKAXD3ueBmgHTegDaAhHQJLSfcuanaZ1fZQoaAZHQGaoMhX8wYdoB03oA2gIR0CS08U2DQJHdX2UKGgGR0BxJ5FlTWGzaAdN1QFoCEdAkteT59E1EXV9lChoBkdAbETr1uivgWgHTboCaAhHQJLYF+5OJtV1fZQoaAZHQGTG1qWTouBoB03oA2gIR0CS7DCe2/i6dX2UKGgGR0BiIUE/0NBoaAdN6ANoCEdAku85emelK3V9lChoBkdAXyEmkWRA8mgHTegDaAhHQJLwny8SPEN1fZQoaAZHQGC5XlCCz1NoB03oA2gIR0CS80ncclw+dX2UKGgGR0Bgh52wFC9iaAdN6ANoCEdAkvR9zwMH8nV9lChoBkdAZ2u8PnSv1WgHTegDaAhHQJL09BRhttR1fZQoaAZHQDb/UNKAavRoB01MAWgIR0CS9SF7D2rXdX2UKGgGR0BuM5Bw++ueaAdNigFoCEdAkv+jMeOn23V9lChoBkdAbSTSydFvymgHTXkBaAhHQJMIOUY8+zN1fZQoaAZHQGDnV58jRlZoB03oA2gIR0CTCgurZJ05dX2UKGgGR0BkKbtRekYXaAdN6ANoCEdAkw4lXaJyhnV9lChoBkdAYQl9pAUtZmgHTegDaAhHQJMPC9Ba9sd1fZQoaAZHQGUUZof0VahoB03oA2gIR0CTD7A5q/M4dX2UKGgGR0BSvazJIUaiaAdLy2gIR0CTFQ4RmK64dX2UKGgGR0BiYz3225QQaAdN6ANoCEdAkxaaSTyJ9HV9lChoBkdAZegAUcn3L2gHTegDaAhHQJMa9DjR2KV1fZQoaAZHQHHH1SbYsd1oB01tAmgIR0CTHLrj5sTGdX2UKGgGR0BeJAmZ3LV4aAdN6ANoCEdAkyFZ4bCJoHV9lChoBkdAWVaBun/DL2gHTegDaAhHQJMml26kIop1fZQoaAZHQF7uQd0aIepoB03oA2gIR0CTPppF1B+ndX2UKGgGR0BlGhiI+GGmaAdN6ANoCEdAk0LiHh0heXV9lChoBkdAapSgvDgqE2gHTSgDaAhHQJNH2mALApN1fZQoaAZHQGIoN2C/XXloB03oA2gIR0CTSH3V09yMdX2UKGgGR0BkiwBeXzDoaAdN6ANoCEdAk0l19BrvcHV9lChoBkdAX++zt1IRRWgHTegDaAhHQJNKA80UGml1fZQoaAZHQG8KfNJOFg5oB00NAmgIR0CTTFoVmBe5dX2UKGgGR0Bw/a/N7jT8aAdNIQNoCEdAk1VOCwr1/XV9lChoBkdAcTZ9GI9C/2gHTboDaAhHQJNZNri2lVN1fZQoaAZHQG1Kvl2eQMhoB00PAmgIR0CTWo43m3fAdX2UKGgGR0BvGUpZwGW2aAdNzwFoCEdAk16FOCXhO3V9lChoBkdAYZt2ZAprlGgHTegDaAhHQJNhU3ZPEbZ1fZQoaAZHQGEy44Ia99NoB03oA2gIR0CTYnRIz3yqdX2UKGgGR0BsU2HxjJ+2aAdNOQNoCEdAk2WR51Ng0HV9lChoBkdAY12KNyYG+2gHTegDaAhHQJNpM/iYLLJ1fZQoaAZHQGHr2+wkgOloB03oA2gIR0CTbmNeMQ2/dX2UKGgGR0Brnlxp+MIeaAdNzAJoCEdAk3PkSVW0Z3V9lChoBkdAYnoqmTC+DmgHTegDaAhHQJN0pbB42TB1fZQoaAZHQHCrbwvxpcpoB02bAWgIR0CTe9Y+B6KMdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}