fearlessbj4
commited on
Commit
•
7ee57c7
1
Parent(s):
43e4166
Upload g_h.py
Browse files
g_h.py
ADDED
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
inset_th=1
|
3 |
+
#_config=json.load(open("config.json","r"))
|
4 |
+
_config={
|
5 |
+
"sug_based_list":["dispute","plaintiff"],
|
6 |
+
"sug_pool_list":["corpus3835","2022~2023"],
|
7 |
+
"embedder_list":["ftlf","ftrob"],
|
8 |
+
"based_index":0,
|
9 |
+
"pool_index":1,
|
10 |
+
"emb_index":1,
|
11 |
+
"sug_th":20,
|
12 |
+
"cluster_epsilon":0.67,
|
13 |
+
"similiar_trace_back_th":0.98,
|
14 |
+
"back_ground_RGB":[77, 6, 39]
|
15 |
+
}
|
16 |
+
emb_dim_lst=[768,1024]
|
17 |
+
bilstm_len_lst=[19,13]
|
18 |
+
cnn_len_lst=[32,18]
|
19 |
+
|
20 |
+
emb_dim=emb_dim_lst[_config["emb_index"]]
|
21 |
+
bilstm_len=bilstm_len_lst[_config["based_index"]]
|
22 |
+
cnn_len=cnn_len_lst[_config["based_index"]]
|
23 |
+
|
24 |
+
|
25 |
+
sug_type=_config["sug_based_list"][_config["based_index"]]
|
26 |
+
pool_type=_config["sug_pool_list"][_config["pool_index"]]
|
27 |
+
emb_type=_config["embedder_list"][_config["emb_index"]]
|
28 |
+
|
29 |
+
sug_th=_config["sug_th"]
|
30 |
+
|
31 |
+
clust_th=_config["cluster_epsilon"]
|
32 |
+
_th=_config["similiar_trace_back_th"]
|
33 |
+
|
34 |
+
bg_rgb=(_config["back_ground_RGB"][0],_config["back_ground_RGB"][1],_config["back_ground_RGB"][2])
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
import os,sys
|
39 |
+
|
40 |
+
|
41 |
+
#_gpu=(1==1)
|
42 |
+
#if not _gpu:
|
43 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
44 |
+
import cv2#opencv-python 4.6.0.66
|
45 |
+
import colorama
|
46 |
+
from colorama import Fore,Style,Back
|
47 |
+
import json
|
48 |
+
import numpy as np
|
49 |
+
from numpy.linalg import norm
|
50 |
+
from sentence_transformers import SentenceTransformer
|
51 |
+
from tqdm import tqdm
|
52 |
+
import tensorflow as tf
|
53 |
+
from tensorflow.keras.models import load_model
|
54 |
+
#---------------------------------------
|
55 |
+
def logistic(x_r,y_r,x_e,_proba=True):
|
56 |
+
from sklearn import linear_model
|
57 |
+
from sklearn.inspection import permutation_importance
|
58 |
+
model=linear_model.LogisticRegression(max_iter=100000)
|
59 |
+
model.fit(x_r,y_r)
|
60 |
+
|
61 |
+
p_e=model.predict(x_e)
|
62 |
+
prob_e=model.predict_proba(x_e)
|
63 |
+
prob_sum=[i[1] for i in prob_e]
|
64 |
+
return (prob_sum if _proba else p_e)
|
65 |
+
|
66 |
+
def cos_sim(a,b):
|
67 |
+
return np.dot(a,b)/(norm(a)*norm(b))
|
68 |
+
def replace_all(t,rp_lst,k,_type=0):
|
69 |
+
temp=t
|
70 |
+
for _e in rp_lst:
|
71 |
+
|
72 |
+
if _type==-1:
|
73 |
+
temp=temp.replace(_e,k+_e)
|
74 |
+
elif _type==1:
|
75 |
+
temp=temp.replace(_e,_e+k)
|
76 |
+
else:
|
77 |
+
temp=temp.replace(_e,k)
|
78 |
+
return temp
|
79 |
+
def jl(file_path):
|
80 |
+
with open(file_path, "r", encoding="utf8") as json_file:
|
81 |
+
json_list = list(json_file)
|
82 |
+
return [json.loads(json_str) for json_str in json_list]
|
83 |
+
def lst_2_dict(lst):
|
84 |
+
_dict={i["filename"]:[i["p_point"],i["d_point"],i["Controversy"]] for i in lst}
|
85 |
+
return _dict
|
86 |
+
def clust_2_dict(clust):
|
87 |
+
_dict={}
|
88 |
+
|
89 |
+
ct=0
|
90 |
+
for i in clust:
|
91 |
+
|
92 |
+
if len(clust[i])==1:
|
93 |
+
_dict[clust[i][0]]=-1
|
94 |
+
else:
|
95 |
+
ct+=1
|
96 |
+
for _e in clust[i]:
|
97 |
+
|
98 |
+
_dict[_e]=ct
|
99 |
+
return _dict
|
100 |
+
def clust_label(clust):
|
101 |
+
_dict={}
|
102 |
+
for i in clust:
|
103 |
+
for _e in clust[i]:
|
104 |
+
if len(clust[i])>1:
|
105 |
+
_dict[_e]=i
|
106 |
+
else:
|
107 |
+
_dict[_e]='-1'
|
108 |
+
return _dict
|
109 |
+
#-----------------------------
|
110 |
+
def clust_core(clust,vec_lst,id_lst,_type="mean"):
|
111 |
+
_dict={}
|
112 |
+
for i in clust:
|
113 |
+
if _type=="head":
|
114 |
+
_dict[i]=vec_lst[id_lst.index(clust[i][0])]
|
115 |
+
elif _type=="central":
|
116 |
+
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
|
117 |
+
temp=np.average(tp_lst, axis=0)
|
118 |
+
cs_lst=[[cos_sim(_e,temp),list(_e)] for _e in tp_lst]
|
119 |
+
_dict[i]=max(cs_lst)[-1]
|
120 |
+
else:#_type=="mean"
|
121 |
+
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
|
122 |
+
_dict[i]=np.average(tp_lst, axis=0)
|
123 |
+
return _dict
|
124 |
+
|
125 |
+
def clust_search(core_dict,target,clust_th=0.65):
|
126 |
+
temp=max([[cos_sim(target,core_dict[i]),i] for i in core_dict])
|
127 |
+
ot_,label_=temp
|
128 |
+
|
129 |
+
return label_ if ot_>=clust_th else '-1'
|
130 |
+
|
131 |
+
def vec2img(vec_lst1,clust_lst1,vec_lst2,clust_lst2,r):
|
132 |
+
tp_lst1=[[vec_lst1[i],clust_lst1[i]] for i in range(len(clust_lst1))]
|
133 |
+
tp_lst2=[[vec_lst2[i],clust_lst2[i]] for i in range(len(clust_lst2))]
|
134 |
+
|
135 |
+
lst1=sorted(tp_lst1,key=lambda x:x[1])
|
136 |
+
lst2=sorted(tp_lst2,key=lambda x:x[1])
|
137 |
+
|
138 |
+
m_lst=lst1+lst2
|
139 |
+
_img=[[255 for _ee in range(len(m_lst))] for _e in range(len(m_lst))]
|
140 |
+
for i in range(len(m_lst)):
|
141 |
+
for j in range(len(m_lst)):
|
142 |
+
if i<j:
|
143 |
+
temp=cos_sim(m_lst[i][0],m_lst[j][0])
|
144 |
+
_tp=(temp-r)/(1-r)*128+127 if temp>r else temp/r*128
|
145 |
+
|
146 |
+
_tp=int(_tp-1)
|
147 |
+
_img[i][j]=_tp
|
148 |
+
_img[j][i]=_tp
|
149 |
+
return _img
|
150 |
+
def img_resize(_img,_max_size):
|
151 |
+
return cv2.resize(np.array(_img).astype('float32'), (_max_size, _max_size), interpolation=cv2.INTER_AREA).tolist()
|
152 |
+
def cnn_load(_device="/gpu:0"):
|
153 |
+
global cnn_model
|
154 |
+
with tf.device(_device):
|
155 |
+
cnn_model=load_model("./models/"+sug_type+"_"+emb_type+"_cnn.dat")
|
156 |
+
cnn_model.load_weights("./models/"+sug_type+"_"+emb_type+"_cnn_best.hdf5")
|
157 |
+
def bilstm_load(_device="/gpu:0"):
|
158 |
+
global bilstm_model
|
159 |
+
with tf.device(_device):
|
160 |
+
bilstm_model=load_model("./models/"+sug_type+"_"+emb_type+"_sa.dat")
|
161 |
+
bilstm_model.load_weights("./models/"+sug_type+"_"+emb_type+"_sa_best.hdf5")
|
162 |
+
#---------------------------------------
|
163 |
+
_tranpose=(1==1)
|
164 |
+
from colorama import Fore,Style,Back
|
165 |
+
from pretty_html_table import build_table
|
166 |
+
import pandas as pd
|
167 |
+
|
168 |
+
|
169 |
+
def html_hl(lst):
|
170 |
+
#font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
|
171 |
+
#font = ImageFont.truetype(font_path, font_size)
|
172 |
+
|
173 |
+
tp_lst=[]
|
174 |
+
|
175 |
+
for i in lst:
|
176 |
+
temp="<mark style=\"background:"+i["background_color"]+";color:"+i["font_color"]+"\">"+i["content"]+"</mark>"
|
177 |
+
tp_lst.append(temp)
|
178 |
+
|
179 |
+
return "".join(tp_lst)
|
180 |
+
def ansi_to_html_dis(_f,file_path,_tranpose=True):
|
181 |
+
|
182 |
+
if _tranpose:
|
183 |
+
_dict={"item":["plaintiff","defendant","dispute","score"],_f["target"]+"(target)":["plaintiff_anchor2","defendant_anchor2","dispute_anchor2",""],_f["case_id"]:["plaintiff_anchor1","defendant_anchor1","dispute_anchor1","score_anchor"]}
|
184 |
+
else:
|
185 |
+
_dict={"case_name":[_f["case_id"],_f["target"]+"(target)"],"plaintiff":["plaintiff_anchor1","plaintiff_anchor2"],"defendant":["defendant_anchor1","defendant_anchor2"],"dispute":["dispute_anchor1","dispute_anchor2"],"score":["","score_anchor"]}
|
186 |
+
|
187 |
+
|
188 |
+
p1=html_hl(_f["plaintiff_case1"])
|
189 |
+
p2=html_hl(_f["plaintiff_case2"])
|
190 |
+
d1=html_hl(_f["defendant_case1"])
|
191 |
+
d2=html_hl(_f["defendant_case2"])
|
192 |
+
dis1=html_hl(_f["dispute_case1"])
|
193 |
+
dis2=html_hl(_f["dispute_case2"])
|
194 |
+
score_="\n<mark style=\"background:#ffffff;color:"+("green" if _f["ensemble_pred"]>=0.75 else "yellow" if _f["ensemble_pred"]>=0.5 else "red")+"\">"+str(_f["ensemble_pred"])+"</mark>"
|
195 |
+
#score_="<mark style=\"color:>"++"\">"+str(_f["ensemble_pred"])+"</mark>"
|
196 |
+
|
197 |
+
df=pd.DataFrame(_dict)
|
198 |
+
html_table_blue_light = build_table(df, 'blue_light')
|
199 |
+
#print(type(html_table_blue_light))
|
200 |
+
injection="<meta charset=\"UTF-8\">"
|
201 |
+
#"<td style = \"background-color: #D9E1F2;font-family: Century Gothic, sans-serif;font-size: medium;text-align: left;padding: 0px 20px 0px 0px;width: auto\">"
|
202 |
+
html_table_blue_light=html_table_blue_light[:html_table_blue_light.find("<thead>")+7]+injection+html_table_blue_light[html_table_blue_light.find("<thead>")+7:]
|
203 |
+
html_table_blue_light=html_table_blue_light.replace("plaintiff_anchor1",p1).replace("plaintiff_anchor2",p2)\
|
204 |
+
.replace("defendant_anchor1",d1).replace("defendant_anchor2",d2)\
|
205 |
+
.replace("dispute_anchor1",dis1).replace("dispute_anchor2",dis2)\
|
206 |
+
.replace("score_anchor",score_)
|
207 |
+
|
208 |
+
with open(file_path, 'w',) as f:
|
209 |
+
f.write(html_table_blue_light)
|
210 |
+
return html_table_blue_light
|
211 |
+
def ansi_to_html(_f,file_path,_tranpose=True):
|
212 |
+
|
213 |
+
if _tranpose:
|
214 |
+
_dict={"item":["plaintiff","p_point","score"],_f["target"]+"(target)":["plaintiff_anchor2","p_point_anchor2",""],_f["case_id"]:["plaintiff_anchor1","p_point_anchor1","score_anchor"]}
|
215 |
+
else:
|
216 |
+
_dict={"case_name":[_f["case_id"],_f["target"]+"(target)"],"plaintiff":["plaintiff_anchor1","plaintiff_anchor2"],"p_point":["p_point_anchor1","p_point_anchor2"],"score":["","score_anchor"]}
|
217 |
+
|
218 |
+
|
219 |
+
p1=html_hl(_f["plaintiff_case1"])
|
220 |
+
p2=html_hl(_f["plaintiff_case2"])
|
221 |
+
|
222 |
+
p_point1=html_hl(_f["p_point_case1"])
|
223 |
+
p_point2=html_hl(_f["p_point_case2"])
|
224 |
+
score_="\n<mark style=\"background:#ffffff;color:"+("green" if _f["ensemble_pred"]>=0.75 else "yellow" if _f["ensemble_pred"]>=0.5 else "red")+"\">"+str(_f["ensemble_pred"])+"</mark>"
|
225 |
+
#score_="<mark style=\"color:>"++"\">"+str(_f["ensemble_pred"])+"</mark>"
|
226 |
+
|
227 |
+
df=pd.DataFrame(_dict)
|
228 |
+
html_table_blue_light = build_table(df, 'blue_light')
|
229 |
+
#print(type(html_table_blue_light))
|
230 |
+
injection="<meta charset=\"UTF-8\">"
|
231 |
+
#"<td style = \"background-color: #D9E1F2;font-family: Century Gothic, sans-serif;font-size: medium;text-align: left;padding: 0px 20px 0px 0px;width: auto\">"
|
232 |
+
html_table_blue_light=html_table_blue_light[:html_table_blue_light.find("<thead>")+7]+injection+html_table_blue_light[html_table_blue_light.find("<thead>")+7:]
|
233 |
+
html_table_blue_light=html_table_blue_light.replace("plaintiff_anchor1",p1).replace("plaintiff_anchor2",p2)\
|
234 |
+
.replace("p_point_anchor1",p_point1).replace("p_point_anchor2",p_point2)\
|
235 |
+
.replace("score_anchor",score_)
|
236 |
+
|
237 |
+
with open(file_path, 'w',) as f:
|
238 |
+
f.write(html_table_blue_light)
|
239 |
+
return html_table_blue_light
|
240 |
+
#---------------------------------------
|
241 |
+
from PIL import Image, ImageDraw, ImageFont
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
# Dictionary mapping colorama codes to RGB colors
|
246 |
+
ANSI_BG_COLORS = {
|
247 |
+
Fore.BLACK: (0, 0, 0),
|
248 |
+
Fore.RED: (255, 0, 0),
|
249 |
+
Fore.GREEN: (0, 255, 0),
|
250 |
+
Fore.YELLOW: (255, 255, 0),
|
251 |
+
Fore.BLUE: (0, 0, 255),
|
252 |
+
Fore.MAGENTA: (255, 0, 255),
|
253 |
+
Fore.CYAN: (0, 255, 255),
|
254 |
+
Fore.WHITE: (255, 255, 255),
|
255 |
+
Fore.RESET: (0, 0, 0), # Reset to black
|
256 |
+
Back.BLACK: (0, 0, 0),
|
257 |
+
Back.RED: (255, 0, 0),
|
258 |
+
Back.GREEN: (0, 255, 0),
|
259 |
+
Back.YELLOW: (255, 255, 0),
|
260 |
+
Back.BLUE: (0, 0, 255),
|
261 |
+
Back.MAGENTA: (255, 0, 255),
|
262 |
+
Back.CYAN: (0, 255, 255),
|
263 |
+
Back.WHITE: (255, 255, 255),
|
264 |
+
'\033[0m': bg_rgb # Reset to White background
|
265 |
+
}
|
266 |
+
|
267 |
+
ANSI_COLORS={_e:"#"+str(hex(1*256*256*256+ANSI_BG_COLORS[_e][0]*256*256+ANSI_BG_COLORS[_e][1]*256+ANSI_BG_COLORS[_e][2]))[3:] for _e in ANSI_BG_COLORS}
|
268 |
+
def ansi_to_image(ansi_text, font_size=20, image_path="./test.png"):
|
269 |
+
global bg_rgb
|
270 |
+
font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
|
271 |
+
font = ImageFont.truetype(font_path, font_size)
|
272 |
+
|
273 |
+
|
274 |
+
# Split the text into lines
|
275 |
+
lines = ansi_text.split('\n')
|
276 |
+
|
277 |
+
# Calculate image size
|
278 |
+
max_width = 0
|
279 |
+
total_height = 0
|
280 |
+
line_heights = []
|
281 |
+
for line in lines:
|
282 |
+
text_width, text_height = font.getsize(line)
|
283 |
+
max_width = max(max_width, text_width)
|
284 |
+
total_height += text_height
|
285 |
+
line_heights.append(text_height)
|
286 |
+
|
287 |
+
# Create a blank image
|
288 |
+
image = Image.new('RGB', (max_width, total_height), color=bg_rgb)
|
289 |
+
draw = ImageDraw.Draw(image)
|
290 |
+
|
291 |
+
y = 0
|
292 |
+
for line, line_height in zip(lines, line_heights):
|
293 |
+
x = 0
|
294 |
+
segments = line.split('\033')
|
295 |
+
anchor_bg_color=(255,255,255)
|
296 |
+
for segment in segments:
|
297 |
+
#print(segment)
|
298 |
+
if segment and segment[-1]=='m':
|
299 |
+
code= segment[:-1]
|
300 |
+
anchor_bg_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
|
301 |
+
#text_width, text_height = draw.textsize(text, font=font)
|
302 |
+
#draw.rectangle([x, y, x + text_width, y + line_height], fill=(255, 255, 255))
|
303 |
+
#draw.text((x, y), text, font=font, fill=anchor_bg_color)
|
304 |
+
x += 0
|
305 |
+
if 'm' in segment:
|
306 |
+
code, text = segment.split('m', 1)
|
307 |
+
font_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
|
308 |
+
text_width, text_height = draw.textsize(text, font=font)
|
309 |
+
draw.rectangle([x, y, x + text_width, y + line_height], anchor_bg_color)
|
310 |
+
draw.text((x, y), text, font=font, fill=font_color)
|
311 |
+
x += text_width
|
312 |
+
else:
|
313 |
+
|
314 |
+
text = segment
|
315 |
+
text_width, text_height = draw.textsize(text, font=font)
|
316 |
+
draw.text((x, y), text, font=font, fill=(255,255,255))
|
317 |
+
x += text_width
|
318 |
+
y += line_height
|
319 |
+
|
320 |
+
# Save the image
|
321 |
+
image.save(image_path)
|
322 |
+
return image_path
|
323 |
+
|
324 |
+
# 示例ANSI文本
|
325 |
+
#ansi_content = '\033[44m555\033[0m\n111\033[41m555\033[0m'
|
326 |
+
|
327 |
+
# 將ANSI轉換為圖像
|
328 |
+
#image_path = ansi_to_image(ansi_content)
|
329 |
+
#
|
330 |
+
#---------------------------------------
|
331 |
+
def suggesting_dis(the_pool,target_name,case_dict):
|
332 |
+
global ANSI_COLORS,_th,c_th,sug_th,corpus_dict,corpus_pd_f,vec_lst,id_lst,sen_lst,corpus_clust_label,_cluster_core_dict,_embedder
|
333 |
+
global bilstm_len,cnn_len,emb_dim,inset_th,clust_th
|
334 |
+
lst_2=[_e for _e in case_dict["dispute"]][:bilstm_len]
|
335 |
+
|
336 |
+
#for _e in lst2:
|
337 |
+
# temp=_embedder.encode(_e)
|
338 |
+
# vec_lst_2.append()
|
339 |
+
vec_lst_2=[_embedder.encode(_e) for _e in lst_2]
|
340 |
+
|
341 |
+
clst_2=[clust_search(_cluster_core_dict,_e,clust_th) for _e in vec_lst_2]
|
342 |
+
plst_2=replace_all("".join(case_dict["plaintiff"]),key_lst,sp_key,1).split(sp_key)
|
343 |
+
dlst_2=replace_all("".join(case_dict["defendant"]),key_lst,sp_key,1).split(sp_key)
|
344 |
+
v_plst_2=[_embedder.encode(_e) for _e in plst_2]
|
345 |
+
v_dlst_2=[_embedder.encode(_e) for _e in dlst_2]
|
346 |
+
|
347 |
+
print(clst_2)
|
348 |
+
|
349 |
+
rt_lst=[]
|
350 |
+
for i in tqdm(the_pool):
|
351 |
+
lst_1=[_e for _e in corpus_dict[i]]
|
352 |
+
id_lst_1=[id_lst[sen_lst.index(_e)] for _e in lst_1]
|
353 |
+
vec_lst_1=[vec_lst[sen_lst.index(_e)] for _e in lst_1]#[_embedder.encode(_e) for _e in lst_1]
|
354 |
+
clst_1=[corpus_clust_label[_e] for _e in id_lst_1]#[clust_search(_cluster_core_dict,_e,0.68) for _e in vec_lst_1]
|
355 |
+
#print(clst_1)
|
356 |
+
inset=sorted([_e for _e in set(clst_1)&set(clst_2) if _e!=-1])
|
357 |
+
temp_ot={}
|
358 |
+
if len(inset)>=max(1,inset_th):
|
359 |
+
temp_ot["target"]=target_name
|
360 |
+
temp_ot["inset"]=inset
|
361 |
+
#print(len(inset))
|
362 |
+
_img=img_resize(vec2img(vec_lst_1,clst_1,vec_lst_2,clst_2,clust_th),cnn_len)
|
363 |
+
cnn_pred=cnn_model.predict(np.array([_img])/255)
|
364 |
+
|
365 |
+
_con1,_con2=[],[]
|
366 |
+
for tp_i in range(bilstm_len):
|
367 |
+
if len(lst_1)>tp_i:
|
368 |
+
_con1.append(vec_lst_1[tp_i])
|
369 |
+
else:
|
370 |
+
_con1.append([0]*emb_dim)
|
371 |
+
for tp_i in range(bilstm_len):
|
372 |
+
if len(lst_2)>tp_i:
|
373 |
+
_con2.append(vec_lst_2[tp_i])
|
374 |
+
else:
|
375 |
+
_con2.append([0]*emb_dim)
|
376 |
+
_con1=np.array([_con1])
|
377 |
+
_con2=np.array([_con2])
|
378 |
+
print(len(_con1),len(_con2),len(_con2[0]))
|
379 |
+
#_con1=list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_1))) if len(lst_1)<=bilstm_len else list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))[:bilstm_len*emb_dim]
|
380 |
+
#_con2=list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_2))) if len(lst_2)<=bilstm_len else list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))[:bilstm_len*emb_dim]
|
381 |
+
bilstm_pred=bilstm_model.predict([_con1,_con2])
|
382 |
+
|
383 |
+
|
384 |
+
temp_ot["cnn_pred"]=float(cnn_pred[0][0])
|
385 |
+
temp_ot["bilstm_pred"]=float(bilstm_pred[0][0])
|
386 |
+
#print(cnn_pred)
|
387 |
+
#print(bilstm_pred)
|
388 |
+
x_e=[[bilstm_pred[0][0],cnn_pred[0][0]]]
|
389 |
+
ensemble_pred=logistic(x_r,y_r,x_e)
|
390 |
+
temp_ot["ensemble_pred"]=float(ensemble_pred[0])
|
391 |
+
#print(ensemble_pred)
|
392 |
+
|
393 |
+
pre_lst_1=[[color_lst[inset.index(clst_1[_e]) % len(color_lst)],Fore.WHITE,lst_1[_e],Style.RESET_ALL] if clst_1[_e] in inset else [Style.RESET_ALL,lst_1[_e]] for _e in range(len(lst_1))]
|
394 |
+
pre_lst_2=[[color_lst[inset.index(clst_2[_e]) % len(color_lst)],Fore.WHITE,lst_2[_e],Style.RESET_ALL] if clst_2[_e] in inset else [Style.RESET_ALL,lst_2[_e]] for _e in range(len(lst_2))]
|
395 |
+
|
396 |
+
vlst_1=[[vec_lst_1[_e],pre_lst_1[_e][0]] for _e in range(len(pre_lst_1)) if len(pre_lst_1[_e])==4]
|
397 |
+
vlst_2=[[vec_lst_2[_e],pre_lst_2[_e][0]] for _e in range(len(pre_lst_2)) if len(pre_lst_2[_e])==4]
|
398 |
+
|
399 |
+
#print(lst_1)
|
400 |
+
|
401 |
+
plst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][0]),key_lst,sp_key,1).split(sp_key)
|
402 |
+
|
403 |
+
dlst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][1]),key_lst,sp_key,1).split(sp_key)
|
404 |
+
|
405 |
+
v_plst_1=[_embedder.encode(_e) for _e in plst_1]
|
406 |
+
|
407 |
+
v_dlst_1=[_embedder.encode(_e) for _e in dlst_1]
|
408 |
+
|
409 |
+
|
410 |
+
cs_p1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_plst_1]
|
411 |
+
cs_d1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_dlst_1]
|
412 |
+
|
413 |
+
cs_p2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_plst_2]
|
414 |
+
cs_d2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_dlst_2]
|
415 |
+
|
416 |
+
pre_lst_p1=[[cs_p1[_e][-1],Fore.WHITE,plst_1[_e],Style.RESET_ALL] if cs_p1[_e][0]>_th else [Style.RESET_ALL,plst_1[_e]] for _e in range(len(cs_p1))]
|
417 |
+
pre_lst_d1=[[cs_d1[_e][-1],Fore.WHITE,dlst_1[_e],Style.RESET_ALL] if cs_d1[_e][0]>_th else [Style.RESET_ALL,dlst_1[_e]] for _e in range(len(cs_d1))]
|
418 |
+
|
419 |
+
pre_lst_p2=[[cs_p2[_e][-1],Fore.WHITE,plst_2[_e],Style.RESET_ALL] if cs_p2[_e][0]>_th else [Style.RESET_ALL,plst_2[_e]] for _e in range(len(cs_p2))]
|
420 |
+
pre_lst_d2=[[cs_d2[_e][-1],Fore.WHITE,dlst_2[_e],Style.RESET_ALL] if cs_d2[_e][0]>_th else [Style.RESET_ALL,dlst_2[_e]] for _e in range(len(cs_d2))]
|
421 |
+
|
422 |
+
|
423 |
+
#if max_dp<max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)]):
|
424 |
+
# max_dp=max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)])
|
425 |
+
|
426 |
+
#print(plst_1)
|
427 |
+
#print(plst_2)
|
428 |
+
#print(dlst_1)
|
429 |
+
#print(dlst_2)
|
430 |
+
draw_lst_1=["".join(_e) for _e in pre_lst_1]
|
431 |
+
draw_lst_2=["".join(_e) for _e in pre_lst_2]
|
432 |
+
|
433 |
+
draw_lst_p1=["".join(_e) for _e in pre_lst_p1]
|
434 |
+
draw_lst_p2=["".join(_e) for _e in pre_lst_p2]
|
435 |
+
draw_lst_d1=["".join(_e) for _e in pre_lst_d1]
|
436 |
+
draw_lst_d2=["".join(_e) for _e in pre_lst_d2]
|
437 |
+
#replace_all(temp_c,key_lst,",",0)
|
438 |
+
|
439 |
+
#print(plst_1)
|
440 |
+
tp_str=""
|
441 |
+
|
442 |
+
#print("---------------------")
|
443 |
+
#print(Fore.BLUE+str(i)+Style.RESET_ALL)
|
444 |
+
temp_ot["case_id"]=i
|
445 |
+
temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p1]
|
446 |
+
temp_ot["defendant_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_d1]
|
447 |
+
temp_ot["dispute_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_1]
|
448 |
+
temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p2]
|
449 |
+
temp_ot["defendant_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_d2]
|
450 |
+
temp_ot["dispute_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_2]
|
451 |
+
|
452 |
+
tp_str+=Fore.BLUE+str(i)+Style.RESET_ALL+"\n"
|
453 |
+
tp_str+=(Fore.GREEN if temp_ot["ensemble_pred"]>=0.75 else Fore.YELLOW if temp_ot["ensemble_pred"]>=0.5 else Fore.RED)+str(temp_ot["ensemble_pred"])+Style.RESET_ALL+"\n"
|
454 |
+
tp_str+=Fore.MAGENTA+"---plaintiff_case1---"+Style.RESET_ALL+"\n"
|
455 |
+
tp_str+="".join(draw_lst_p1)+Style.RESET_ALL+"\n"
|
456 |
+
|
457 |
+
tp_str+=Fore.MAGENTA+"---defendant_case1---"+Style.RESET_ALL+"\n"
|
458 |
+
tp_str+="".join(draw_lst_d1)+Style.RESET_ALL+"\n"
|
459 |
+
|
460 |
+
tp_str+=Fore.MAGENTA+"---dispute_case1---"+Style.RESET_ALL+"\n"
|
461 |
+
tp_str+="".join(draw_lst_1)+Style.RESET_ALL+"\n"
|
462 |
+
###
|
463 |
+
tp_str+=Fore.BLUE+"target"+Style.RESET_ALL+"\n"
|
464 |
+
|
465 |
+
tp_str+=Fore.MAGENTA+"---plaintiff_case2---"+Style.RESET_ALL+"\n"
|
466 |
+
tp_str+="".join(draw_lst_p2)+Style.RESET_ALL+"\n"
|
467 |
+
|
468 |
+
tp_str+=Fore.MAGENTA+"---defendant_case2---"+Style.RESET_ALL+"\n"
|
469 |
+
tp_str+="".join(draw_lst_d2)+Style.RESET_ALL+"\n"
|
470 |
+
|
471 |
+
tp_str+=Fore.MAGENTA+"---dispute_case2---"+Style.RESET_ALL+"\n"
|
472 |
+
tp_str+="".join(draw_lst_2)+Style.RESET_ALL+"\n"
|
473 |
+
|
474 |
+
#tp_str+="---------------------"+"\n"
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
temp_ot["output"]=tp_str
|
479 |
+
rt_lst.append(temp_ot)
|
480 |
+
print(tp_str)
|
481 |
+
ot=sorted(rt_lst,key=lambda x:x["ensemble_pred"],reverse=True)
|
482 |
+
ot_lst=[i["output"] for i in ot[:sug_th]]
|
483 |
+
|
484 |
+
for i in ot[:sug_th]:
|
485 |
+
file=open("./json_file/"+str(target_name).replace(",","_")+"&"+str(i["case_id"])+".json","w",encoding='utf8')
|
486 |
+
json.dump({_e:i[_e] for _e in i if _e!="output"},file,indent=4,ensure_ascii=False)
|
487 |
+
file.close()
|
488 |
+
return ot_lst,ot[:sug_th]
|
489 |
+
def suggesting(the_pool,target_name,case_dict):
|
490 |
+
global ANSI_COLORS,_th,c_th,sug_th,corpus_dict,corpus_pd_f,vec_lst,id_lst,sen_lst,corpus_clust_label,_cluster_core_dict,_embedder
|
491 |
+
global bilstm_len,cnn_len,emb_dim,inset_th,clust_th
|
492 |
+
lst_2=[_e for _e in case_dict["p_point"]][:bilstm_len]
|
493 |
+
|
494 |
+
#for _e in lst2:
|
495 |
+
# temp=_embedder.encode(_e)
|
496 |
+
# vec_lst_2.append()
|
497 |
+
vec_lst_2=[_embedder.encode(_e) for _e in lst_2]
|
498 |
+
|
499 |
+
clst_2=[clust_search(_cluster_core_dict,_e,clust_th) for _e in vec_lst_2]
|
500 |
+
plst_2=replace_all("".join(case_dict["plaintiff"]),key_lst,sp_key,1).split(sp_key)
|
501 |
+
|
502 |
+
v_plst_2=[_embedder.encode(_e) for _e in plst_2]
|
503 |
+
|
504 |
+
|
505 |
+
print(clst_2)
|
506 |
+
|
507 |
+
rt_lst=[]
|
508 |
+
for i in tqdm(the_pool):
|
509 |
+
if target_name==i:
|
510 |
+
continue
|
511 |
+
lst_1=[_e for _e in corpus_dict[i]]
|
512 |
+
id_lst_1=[id_lst[sen_lst.index(_e)] for _e in lst_1]
|
513 |
+
vec_lst_1=[vec_lst[sen_lst.index(_e)] for _e in lst_1]#[_embedder.encode(_e) for _e in lst_1]
|
514 |
+
clst_1=[corpus_clust_label[_e] for _e in id_lst_1]#[clust_search(_cluster_core_dict,_e,0.68) for _e in vec_lst_1]
|
515 |
+
#print(clst_1)
|
516 |
+
inset=sorted([_e for _e in set(clst_1)&set(clst_2) if _e!=-1])
|
517 |
+
temp_ot={}
|
518 |
+
if len(inset)>=max(1,inset_th):
|
519 |
+
temp_ot["target"]=target_name
|
520 |
+
temp_ot["inset"]=inset
|
521 |
+
#print(len(inset))
|
522 |
+
_img=img_resize(vec2img(vec_lst_1,clst_1,vec_lst_2,clst_2,clust_th),cnn_len)
|
523 |
+
cnn_pred=cnn_model.predict(np.array([_img])/255)
|
524 |
+
|
525 |
+
_con1,_con2=[],[]
|
526 |
+
for tp_i in range(bilstm_len):
|
527 |
+
if len(lst_1)>tp_i:
|
528 |
+
_con1.append(vec_lst_1[tp_i])
|
529 |
+
else:
|
530 |
+
_con1.append([0]*emb_dim)
|
531 |
+
for tp_i in range(bilstm_len):
|
532 |
+
if len(lst_2)>tp_i:
|
533 |
+
_con2.append(vec_lst_2[tp_i])
|
534 |
+
else:
|
535 |
+
_con2.append([0]*emb_dim)
|
536 |
+
_con1=np.array([_con1])
|
537 |
+
_con2=np.array([_con2])
|
538 |
+
print(len(_con1),len(_con2),len(_con2[0]))
|
539 |
+
#_con1=list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_1))) if len(lst_1)<=bilstm_len else list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))[:bilstm_len*emb_dim]
|
540 |
+
#_con2=list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_2))) if len(lst_2)<=bilstm_len else list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))[:bilstm_len*emb_dim]
|
541 |
+
bilstm_pred=bilstm_model.predict([_con1,_con2])
|
542 |
+
temp_ot["cnn_pred"]=float(cnn_pred[0][0])
|
543 |
+
temp_ot["bilstm_pred"]=float(bilstm_pred[0][0])
|
544 |
+
#print(cnn_pred)
|
545 |
+
#print(bilstm_pred)
|
546 |
+
x_e=[[bilstm_pred[0][0],cnn_pred[0][0]]]
|
547 |
+
ensemble_pred=logistic(x_r,y_r,x_e)
|
548 |
+
temp_ot["ensemble_pred"]=float(ensemble_pred[0])
|
549 |
+
#print(ensemble_pred)
|
550 |
+
|
551 |
+
pre_lst_1=[[color_lst[inset.index(clst_1[_e]) % len(color_lst)],Fore.WHITE,lst_1[_e],Style.RESET_ALL] if clst_1[_e] in inset else [Style.RESET_ALL,lst_1[_e]] for _e in range(len(lst_1))]
|
552 |
+
pre_lst_2=[[color_lst[inset.index(clst_2[_e]) % len(color_lst)],Fore.WHITE,lst_2[_e],Style.RESET_ALL] if clst_2[_e] in inset else [Style.RESET_ALL,lst_2[_e]] for _e in range(len(lst_2))]
|
553 |
+
|
554 |
+
vlst_1=[[vec_lst_1[_e],pre_lst_1[_e][0]] for _e in range(len(pre_lst_1)) if len(pre_lst_1[_e])==4]
|
555 |
+
vlst_2=[[vec_lst_2[_e],pre_lst_2[_e][0]] for _e in range(len(pre_lst_2)) if len(pre_lst_2[_e])==4]
|
556 |
+
|
557 |
+
#print(lst_1)
|
558 |
+
|
559 |
+
plst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][0]),key_lst,sp_key,1).split(sp_key)
|
560 |
+
|
561 |
+
|
562 |
+
v_plst_1=[_embedder.encode(_e) for _e in plst_1]
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
cs_p1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_plst_1]
|
567 |
+
|
568 |
+
cs_p2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_plst_2]
|
569 |
+
|
570 |
+
pre_lst_p1=[[cs_p1[_e][-1],Fore.WHITE,plst_1[_e],Style.RESET_ALL] if cs_p1[_e][0]>_th else [Style.RESET_ALL,plst_1[_e]] for _e in range(len(cs_p1))]
|
571 |
+
|
572 |
+
|
573 |
+
pre_lst_p2=[[cs_p2[_e][-1],Fore.WHITE,plst_2[_e],Style.RESET_ALL] if cs_p2[_e][0]>_th else [Style.RESET_ALL,plst_2[_e]] for _e in range(len(cs_p2))]
|
574 |
+
|
575 |
+
|
576 |
+
|
577 |
+
#if max_dp<max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)]):
|
578 |
+
# max_dp=max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)])
|
579 |
+
|
580 |
+
#print(plst_1)
|
581 |
+
#print(plst_2)
|
582 |
+
#print(dlst_1)
|
583 |
+
#print(dlst_2)
|
584 |
+
draw_lst_1=["".join(_e) for _e in pre_lst_1]
|
585 |
+
draw_lst_2=["".join(_e) for _e in pre_lst_2]
|
586 |
+
|
587 |
+
draw_lst_p1=["".join(_e) for _e in pre_lst_p1]
|
588 |
+
draw_lst_p2=["".join(_e) for _e in pre_lst_p2]
|
589 |
+
|
590 |
+
#replace_all(temp_c,key_lst,",",0)
|
591 |
+
|
592 |
+
#print(plst_1)
|
593 |
+
tp_str=""
|
594 |
+
|
595 |
+
#print("---------------------")
|
596 |
+
#print(Fore.BLUE+str(i)+Style.RESET_ALL)
|
597 |
+
temp_ot["case_id"]=i
|
598 |
+
temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p1]
|
599 |
+
temp_ot["p_point_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_1]
|
600 |
+
temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p2]
|
601 |
+
temp_ot["p_point_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_2]
|
602 |
+
|
603 |
+
tp_str+=Fore.BLUE+str(i)+Style.RESET_ALL+"\n"
|
604 |
+
tp_str+=(Fore.GREEN if temp_ot["ensemble_pred"]>=0.75 else Fore.YELLOW if temp_ot["ensemble_pred"]>=0.5 else Fore.RED)+str(temp_ot["ensemble_pred"])+Style.RESET_ALL+"\n"
|
605 |
+
tp_str+=Fore.MAGENTA+"---plaintiff_case1---"+Style.RESET_ALL+"\n"
|
606 |
+
tp_str+="".join(draw_lst_p1)+Style.RESET_ALL+"\n"
|
607 |
+
|
608 |
+
|
609 |
+
tp_str+=Fore.MAGENTA+"---p_point_case1---"+Style.RESET_ALL+"\n"
|
610 |
+
tp_str+="".join(draw_lst_1)+Style.RESET_ALL+"\n"
|
611 |
+
###
|
612 |
+
tp_str+=Fore.BLUE+"target"+Style.RESET_ALL+"\n"
|
613 |
+
|
614 |
+
tp_str+=Fore.MAGENTA+"---plaintiff_case2---"+Style.RESET_ALL+"\n"
|
615 |
+
tp_str+="".join(draw_lst_p2)+Style.RESET_ALL+"\n"
|
616 |
+
|
617 |
+
|
618 |
+
tp_str+=Fore.MAGENTA+"---p_point_case2---"+Style.RESET_ALL+"\n"
|
619 |
+
tp_str+="".join(draw_lst_2)+Style.RESET_ALL+"\n"
|
620 |
+
|
621 |
+
#tp_str+="---------------------"+"\n"
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
temp_ot["output"]=tp_str
|
626 |
+
rt_lst.append(temp_ot)
|
627 |
+
print(tp_str)
|
628 |
+
ot=sorted(rt_lst,key=lambda x:x["ensemble_pred"],reverse=True)
|
629 |
+
ot_lst=[i["output"] for i in ot[:sug_th]]
|
630 |
+
|
631 |
+
for i in ot[:sug_th]:
|
632 |
+
file=open("./json_file/"+str(target_name).replace(",","_")+"&"+str(i["case_id"])+".json","w",encoding='utf8')
|
633 |
+
json.dump({_e:i[_e] for _e in i if _e!="output"},file,indent=4,ensure_ascii=False)
|
634 |
+
file.close()
|
635 |
+
return ot_lst,ot[:sug_th]
|
636 |
+
#---------------------------------------
|
637 |
+
|
638 |
+
|
639 |
+
_dir_lst=["../gpt4_0409_p_3/","../taide_llama3_8b_3/"]
|
640 |
+
_dir=_dir_lst[0]
|
641 |
+
sp_key="@"
|
642 |
+
emb_model="ftrob"
|
643 |
+
emb_model_path={\
|
644 |
+
"lf":"thunlp/Lawformer",\
|
645 |
+
"rob":'hfl/chinese-roberta-wwm-ext-large',\
|
646 |
+
"ftlf":"./sbert_pretrained_model/training-lawformer-clause_th10_100k_task-bs100-e2-2023-10-28/",
|
647 |
+
"ftrob":"./sbert_pretrained_model/training-roberta-clause_th10_100k_task-bs100-e2-2023-10-27",\
|
648 |
+
}
|
649 |
+
|
650 |
+
color_lst=[Back.BLUE,Back.GREEN,Back.MAGENTA,Back.YELLOW,Back.RED,Back.CYAN]#[Fore.RED,Fore.GREEN,Fore.YELLOW,Fore.BLUE,Fore.MAGENTA,Fore.CYAN]
|
651 |
+
|
652 |
+
|
653 |
+
log_f=json.load(open("./src/plaintiff_logistic_features.json","r"))["BiLSTM_CNN"]
|
654 |
+
x_r=np.array(log_f)[:,:-1]
|
655 |
+
y_r=np.array(log_f)[:,-1]
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
#pd_path,dis_path,s_path,v_path,c_path,t_path,cr_path,br_path=["TAIDE-LX-8B.jsonl","llama3_taide_8b_re_3_o_c.json","sentence.json","vector.json","hdb_cluster.json","hdb_ternary_array.json","hdb_cnn_result.json","hdb_sa_result.json"]
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
if sug_type=="plaintiff":
|
664 |
+
pd_f=corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
|
665 |
+
s_f=json.load(open("./src/plaintiff_corpus3835_sen.json","r"))
|
666 |
+
v_f=json.load(open("./src/plaintiff_corpus3835_vec.json","r"))#json.load(open(_dir+v_path,"r"))
|
667 |
+
|
668 |
+
o_c_f=json.load(open("./src/plaintiff_corpus3835_cluster.json","r"))["clusters"]
|
669 |
+
c_f=clust_2_dict(o_c_f)
|
670 |
+
t_f=json.load(open("./src/plaintiff_ter.json","r"))
|
671 |
+
if pool_type=="corpus3835":
|
672 |
+
corpus_clust_label=clust_label(o_c_f)
|
673 |
+
|
674 |
+
vec_lst=v_f["vector"]
|
675 |
+
id_lst=v_f["id"]
|
676 |
+
sen_lst=s_f["sentence"]
|
677 |
+
|
678 |
+
corpus_dict={}
|
679 |
+
for i in range(len(id_lst)):
|
680 |
+
fid=id_lst[i].split("@")[0]
|
681 |
+
if fid not in corpus_dict:
|
682 |
+
corpus_dict[fid]=[sen_lst[i]]
|
683 |
+
else:
|
684 |
+
corpus_dict[fid].append(sen_lst[i])
|
685 |
+
corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
|
686 |
+
else:
|
687 |
+
vec_f=json.load(open("./src/plaintiff_2022~2023_vec.json","r"))
|
688 |
+
vec_lst=[_e for i in vec_f for _e in vec_f[i]]
|
689 |
+
|
690 |
+
|
691 |
+
corpus_dict=json.load(open("./src/plaintiff_2022~2023_raw.json","r"))
|
692 |
+
corpus_pd_f=json.load(open("./src/2022~2023_raw.json","r"))["claim"]
|
693 |
+
corpus_clust_f=json.load(open("./src/plaintiff_2022~2023_clust.json","r"))
|
694 |
+
|
695 |
+
sen_lst=[_e for i in corpus_dict for _e in corpus_dict[i]]
|
696 |
+
id_lst=[i+"@"+str(_e) for i in corpus_dict for _e in range(len(corpus_dict[i]))]
|
697 |
+
corpus_clust_label={_e:corpus_clust_f[_e[:_e.find("@")]][int(_e[_e.find("@")+1:])] for _e in id_lst}
|
698 |
+
|
699 |
+
elif sug_type=="dispute":
|
700 |
+
pd_f=corpus_pd_f=json.load(open("./src/corpus3835_raw_dis.json","r"))["claim"]
|
701 |
+
s_f=json.load(open("./src/dispute_corpus3835_sen.json","r"))
|
702 |
+
v_f=json.load(open("./src/dispute_corpus3835_vec.json","r"))#json.load(open(_dir+v_path,"r"))
|
703 |
+
|
704 |
+
o_c_f=json.load(open("./src/dispute_corpus3835_cluster.json","r"))["clusters"]
|
705 |
+
c_f=clust_2_dict(o_c_f)
|
706 |
+
t_f=json.load(open("./src/dispute_ter.json","r"))
|
707 |
+
if pool_type=="corpus3835":
|
708 |
+
corpus_clust_label=clust_label(o_c_f)
|
709 |
+
|
710 |
+
vec_lst=v_f["vector"]
|
711 |
+
id_lst=v_f["id"]
|
712 |
+
sen_lst=s_f["sentence"]
|
713 |
+
|
714 |
+
corpus_dict={}
|
715 |
+
for i in range(len(id_lst)):
|
716 |
+
fid=id_lst[i].split("@")[0]
|
717 |
+
if fid not in corpus_dict:
|
718 |
+
corpus_dict[fid]=[sen_lst[i]]
|
719 |
+
else:
|
720 |
+
corpus_dict[fid].append(sen_lst[i])
|
721 |
+
corpus_pd_f=json.load(open("./src/corpus3835_raw_dis.json","r"))["claim"]
|
722 |
+
else:
|
723 |
+
vec_f=json.load(open("./src/dispute_2022~2023_vec.json","r"))
|
724 |
+
vec_lst=[_e for i in vec_f for _e in vec_f[i]]
|
725 |
+
|
726 |
+
|
727 |
+
corpus_dict=json.load(open("./src/dispute_2022~2023_raw.json","r"))
|
728 |
+
corpus_pd_f=json.load(open("./src/new22_23_3k3_corpus_raw.json","r"))["claim"]
|
729 |
+
corpus_clust_f=json.load(open("./src/dispute_22~23_clust.json","r"))
|
730 |
+
|
731 |
+
sen_lst=[_e for i in corpus_dict for _e in corpus_dict[i]]
|
732 |
+
id_lst=[i+"@"+str(_e) for i in corpus_dict for _e in range(len(corpus_dict[i]))]
|
733 |
+
corpus_clust_label={_e:corpus_clust_f[_e[:_e.find("@")]][int(_e[_e.find("@")+1:])] for _e in id_lst}
|
734 |
+
|
735 |
+
|
736 |
+
|
737 |
+
new_point_f=lst_2_dict(jl("./src/gpt-4-turbo-0409-0.3-new22_23.jsonl"))
|
738 |
+
new_pd_f=json.load(open("./src/new22_23_3k3_corpus_raw.json","r"))["claim"]
|
739 |
+
###
|
740 |
+
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
|
745 |
+
|
746 |
+
|
747 |
+
key_lst=[",","。","?","?","!","!",";",":",";",":"]#["。","?","?","!","!",";",":",";",":"]
|
748 |
+
|
749 |
+
|
750 |
+
_embedder = SentenceTransformer(emb_model_path[emb_model])
|
751 |
+
cnn_model =...
|
752 |
+
bilstm_model =...
|
753 |
+
|
754 |
+
"""#fifo
|
755 |
+
cnn_load()
|
756 |
+
bilstm_load()
|
757 |
+
"""
|
758 |
+
cnn_load("/cpu:0")
|
759 |
+
bilstm_load("/cpu:0")
|
760 |
+
#"""
|
761 |
+
|
762 |
+
|
763 |
+
|
764 |
+
_cluster_core_dict=clust_core(o_c_f,v_f["vector"],v_f["id"],"central")
|
765 |
+
#---------------------------------------
|
766 |
+
|
767 |
+
from colorama import Fore,Style,Back
|
768 |
+
|
769 |
+
import gradio as gr
|
770 |
+
|
771 |
+
def case_sug_dis(file_name,plaintiff,defendant,p_point,d_point,dispute_list):
|
772 |
+
global new_pd_f,new_point_f,corpus_dict
|
773 |
+
|
774 |
+
#print(file_name)
|
775 |
+
#print(point_f)
|
776 |
+
#print(list(pd_f.keys()).index(file_name))
|
777 |
+
if file_name not in new_pd_f:
|
778 |
+
print("file not found")
|
779 |
+
file_name="user_input"
|
780 |
+
else:
|
781 |
+
plaintiff=new_pd_f[file_name][0]
|
782 |
+
defendant=new_pd_f[file_name][1]
|
783 |
+
p_point=new_point_f[file_name][0]
|
784 |
+
d_point=new_point_f[file_name][1]
|
785 |
+
dispute_list=new_point_f[file_name][2]
|
786 |
+
|
787 |
+
global sug_th
|
788 |
+
|
789 |
+
|
790 |
+
p_point="。".split(p_point) if type(p_point)==type("111") else p_point
|
791 |
+
d_point="。".split(d_point) if type(d_point)==type("111") else d_point
|
792 |
+
dispute_list="。".split(dispute_list) if type(dispute_list)==type("111") else dispute_list
|
793 |
+
_pool=[i for i in corpus_dict]
|
794 |
+
_case_dict={"plaintiff":plaintiff,"defendant":defendant,"p_point":p_point,"d_point":d_point,"dispute":dispute_list}
|
795 |
+
ot,ot_dict=suggesting_dis(_pool,file_name,_case_dict)
|
796 |
+
|
797 |
+
|
798 |
+
dispute="\n".join(dispute_list)
|
799 |
+
#ot=[Back.BLUE+dispute+Style.RESET_ALL]*10
|
800 |
+
output_list=[]
|
801 |
+
print("-----")
|
802 |
+
print(len(ot_dict))
|
803 |
+
out_path="./out_of_range.html"
|
804 |
+
for i in range(sug_th):
|
805 |
+
if i<len(ot_dict):
|
806 |
+
_path="./html_file/test"+str(i)+".html"
|
807 |
+
output_html=ansi_to_html_dis(ot_dict[i],_path)
|
808 |
+
#output_image = Image.open(_path)
|
809 |
+
output_list.append(_path)
|
810 |
+
else:
|
811 |
+
output_list.append(out_path)
|
812 |
+
return output_list
|
813 |
+
def case_sug(file_name,plaintiff,p_point):
|
814 |
+
global new_pd_f,new_point_f,corpus_dict
|
815 |
+
|
816 |
+
print(file_name)
|
817 |
+
#print(point_f)
|
818 |
+
#print(list(pd_f.keys()).index(file_name))
|
819 |
+
if file_name not in new_pd_f:
|
820 |
+
print("file not found")
|
821 |
+
file_name="user_input"
|
822 |
+
else:
|
823 |
+
plaintiff=new_pd_f[file_name][0]
|
824 |
+
p_point=new_point_f[file_name][0]
|
825 |
+
|
826 |
+
|
827 |
+
global sug_th
|
828 |
+
|
829 |
+
p_point=p_point.split("。") if type(p_point)==type("111") else p_point
|
830 |
+
_pool=[i for i in corpus_dict]
|
831 |
+
_case_dict={"plaintiff":plaintiff,"p_point":p_point}
|
832 |
+
print(_case_dict,[type(_case_dict[_e]) for _e in _case_dict])
|
833 |
+
ot,ot_dict=suggesting(_pool,file_name,_case_dict)
|
834 |
+
|
835 |
+
|
836 |
+
|
837 |
+
#ot=[Back.BLUE+dispute+Style.RESET_ALL]*10
|
838 |
+
output_list=[]
|
839 |
+
print("-----")
|
840 |
+
print(len(ot_dict))
|
841 |
+
out_path="./out_of_range.html"
|
842 |
+
for i in range(sug_th):
|
843 |
+
if i<len(ot_dict):
|
844 |
+
_path="./html_file/test"+str(i)+".html"
|
845 |
+
output_html=ansi_to_html(ot_dict[i],_path)
|
846 |
+
#output_image = Image.open(_path)
|
847 |
+
output_list.append(_path)
|
848 |
+
else:
|
849 |
+
output_list.append(out_path)
|
850 |
+
return output_list
|
851 |
+
if sug_type=="plaintiff":
|
852 |
+
demo = gr.Interface(fn=case_sug, inputs=["text","text","text"], outputs=[gr.outputs.File() for i in range(sug_th)])
|
853 |
+
demo.launch(share=True,server_port=4096,show_error=True)
|
854 |
+
elif sug_type=="dispute":
|
855 |
+
demo = gr.Interface(fn=case_sug_dis, inputs=["text","text","text","text","text","text"], outputs=[gr.outputs.File() for i in range(sug_th)])
|
856 |
+
demo.launch(share=True,server_port=2048,show_error=True)
|