fearlessbj4's picture
Upload g_h.py
681f1c8 verified
raw
history blame
22.5 kB
import json
inset_th=1
#_config=json.load(open("config.json","r"))
_config={
"sug_based_list":["dispute","plaintiff"],
"sug_pool_list":["corpus3835","2022~2023"],
"embedder_list":["ftlf","ftrob"],
"based_index":1,
"pool_index":1,
"emb_index":1,
"sug_th":20,
"cluster_epsilon":0.67,
"similiar_trace_back_th":0.98,
"back_ground_RGB":[77, 6, 39]
}
emb_dim_lst=[768,1024]
bilstm_len_lst=[19,13]
cnn_len_lst=[32,18]
emb_dim=emb_dim_lst[_config["emb_index"]]
bilstm_len=bilstm_len_lst[_config["based_index"]]
cnn_len=cnn_len_lst[_config["based_index"]]
sug_type=_config["sug_based_list"][_config["based_index"]]
pool_type=_config["sug_pool_list"][_config["pool_index"]]
emb_type=_config["embedder_list"][_config["emb_index"]]
sug_th=_config["sug_th"]
clust_th=_config["cluster_epsilon"]
_th=_config["similiar_trace_back_th"]
bg_rgb=(_config["back_ground_RGB"][0],_config["back_ground_RGB"][1],_config["back_ground_RGB"][2])
import os,sys
#_gpu=(1==1)
#if not _gpu:
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import cv2#opencv-python 4.6.0.66
import colorama
from colorama import Fore,Style,Back
import json
import numpy as np
from numpy.linalg import norm
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
import tensorflow as tf
from tensorflow.keras.models import load_model
#---------------------------------------
def logistic(x_r,y_r,x_e,_proba=True):
from sklearn import linear_model
from sklearn.inspection import permutation_importance
model=linear_model.LogisticRegression(max_iter=100000)
model.fit(x_r,y_r)
p_e=model.predict(x_e)
prob_e=model.predict_proba(x_e)
prob_sum=[i[1] for i in prob_e]
return (prob_sum if _proba else p_e)
def cos_sim(a,b):
return np.dot(a,b)/(norm(a)*norm(b))
def replace_all(t,rp_lst,k,_type=0):
temp=t
for _e in rp_lst:
if _type==-1:
temp=temp.replace(_e,k+_e)
elif _type==1:
temp=temp.replace(_e,_e+k)
else:
temp=temp.replace(_e,k)
return temp
def jl(file_path):
with open(file_path, "r", encoding="utf8") as json_file:
json_list = list(json_file)
return [json.loads(json_str) for json_str in json_list]
def lst_2_dict(lst):
_dict={i["filename"]:[i["p_point"],i["d_point"],i["Controversy"]] for i in lst}
return _dict
def clust_2_dict(clust):
_dict={}
ct=0
for i in clust:
if len(clust[i])==1:
_dict[clust[i][0]]=-1
else:
ct+=1
for _e in clust[i]:
_dict[_e]=ct
return _dict
def clust_label(clust):
_dict={}
for i in clust:
for _e in clust[i]:
if len(clust[i])>1:
_dict[_e]=i
else:
_dict[_e]='-1'
return _dict
#-----------------------------
def clust_core(clust,vec_lst,id_lst,_type="mean"):
_dict={}
for i in clust:
if _type=="head":
_dict[i]=vec_lst[id_lst.index(clust[i][0])]
elif _type=="central":
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
temp=np.average(tp_lst, axis=0)
cs_lst=[[cos_sim(_e,temp),list(_e)] for _e in tp_lst]
_dict[i]=max(cs_lst)[-1]
else:#_type=="mean"
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
_dict[i]=np.average(tp_lst, axis=0)
return _dict
def clust_search(core_dict,target,clust_th=0.65):
temp=max([[cos_sim(target,core_dict[i]),i] for i in core_dict])
ot_,label_=temp
return label_ if ot_>=clust_th else '-1'
def vec2img(vec_lst1,clust_lst1,vec_lst2,clust_lst2,r):
tp_lst1=[[vec_lst1[i],clust_lst1[i]] for i in range(len(clust_lst1))]
tp_lst2=[[vec_lst2[i],clust_lst2[i]] for i in range(len(clust_lst2))]
lst1=sorted(tp_lst1,key=lambda x:x[1])
lst2=sorted(tp_lst2,key=lambda x:x[1])
m_lst=lst1+lst2
_img=[[255 for _ee in range(len(m_lst))] for _e in range(len(m_lst))]
for i in range(len(m_lst)):
for j in range(len(m_lst)):
if i<j:
temp=cos_sim(m_lst[i][0],m_lst[j][0])
_tp=(temp-r)/(1-r)*128+127 if temp>r else temp/r*128
_tp=int(_tp-1)
_img[i][j]=_tp
_img[j][i]=_tp
return _img
def img_resize(_img,_max_size):
return cv2.resize(np.array(_img).astype('float32'), (_max_size, _max_size), interpolation=cv2.INTER_AREA).tolist()
def cnn_load(_device="/gpu:0"):
global cnn_model
with tf.device(_device):
cnn_model=load_model("./models/"+sug_type+"_"+emb_type+"_cnn.dat")
cnn_model.load_weights("./models/"+sug_type+"_"+emb_type+"_cnn_best.hdf5")
def bilstm_load(_device="/gpu:0"):
global bilstm_model
with tf.device(_device):
bilstm_model=load_model("./models/"+sug_type+"_"+emb_type+"_sa.dat")
bilstm_model.load_weights("./models/"+sug_type+"_"+emb_type+"_sa_best.hdf5")
#---------------------------------------
_tranpose=(1==1)
from colorama import Fore,Style,Back
from pretty_html_table import build_table
import pandas as pd
def html_hl(lst):
#font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
#font = ImageFont.truetype(font_path, font_size)
tp_lst=[]
for i in lst:
temp="<mark style=\"background:"+i["background_color"]+";color:"+i["font_color"]+"\">"+i["content"]+"</mark>"
tp_lst.append(temp)
return "".join(tp_lst)
def ansi_to_html(_f,file_path,_tranpose=True):
if _tranpose:
_dict={"item":["plaintiff","p_point","score"],_f["target"]+"(target)":["plaintiff_anchor2","p_point_anchor2",""],_f["case_id"]:["plaintiff_anchor1","p_point_anchor1","score_anchor"]}
else:
_dict={"case_name":[_f["case_id"],_f["target"]+"(target)"],"plaintiff":["plaintiff_anchor1","plaintiff_anchor2"],"p_point":["p_point_anchor1","p_point_anchor2"],"score":["","score_anchor"]}
p1=html_hl(_f["plaintiff_case1"])
p2=html_hl(_f["plaintiff_case2"])
p_point1=html_hl(_f["p_point_case1"])
p_point2=html_hl(_f["p_point_case2"])
score_="\n<mark style=\"background:#ffffff;color:"+("green" if _f["ensemble_pred"]>=0.75 else "yellow" if _f["ensemble_pred"]>=0.5 else "red")+"\">"+str(_f["ensemble_pred"])+"</mark>"
#score_="<mark style=\"color:>"++"\">"+str(_f["ensemble_pred"])+"</mark>"
df=pd.DataFrame(_dict)
html_table_blue_light = build_table(df, 'blue_light')
#print(type(html_table_blue_light))
injection="<meta charset=\"UTF-8\">"
#"<td style = \"background-color: #D9E1F2;font-family: Century Gothic, sans-serif;font-size: medium;text-align: left;padding: 0px 20px 0px 0px;width: auto\">"
html_table_blue_light=html_table_blue_light[:html_table_blue_light.find("<thead>")+7]+injection+html_table_blue_light[html_table_blue_light.find("<thead>")+7:]
html_table_blue_light=html_table_blue_light.replace("plaintiff_anchor1",p1).replace("plaintiff_anchor2",p2)\
.replace("p_point_anchor1",p_point1).replace("p_point_anchor2",p_point2)\
.replace("score_anchor",score_)
with open(file_path, 'w',) as f:
f.write(html_table_blue_light)
return html_table_blue_light
#---------------------------------------
from PIL import Image, ImageDraw, ImageFont
# Dictionary mapping colorama codes to RGB colors
ANSI_BG_COLORS = {
Fore.BLACK: (0, 0, 0),
Fore.RED: (255, 0, 0),
Fore.GREEN: (0, 255, 0),
Fore.YELLOW: (255, 255, 0),
Fore.BLUE: (0, 0, 255),
Fore.MAGENTA: (255, 0, 255),
Fore.CYAN: (0, 255, 255),
Fore.WHITE: (255, 255, 255),
Fore.RESET: (0, 0, 0), # Reset to black
Back.BLACK: (0, 0, 0),
Back.RED: (255, 0, 0),
Back.GREEN: (0, 255, 0),
Back.YELLOW: (255, 255, 0),
Back.BLUE: (0, 0, 255),
Back.MAGENTA: (255, 0, 255),
Back.CYAN: (0, 255, 255),
Back.WHITE: (255, 255, 255),
'\033[0m': bg_rgb # Reset to White background
}
ANSI_COLORS={_e:"#"+str(hex(1*256*256*256+ANSI_BG_COLORS[_e][0]*256*256+ANSI_BG_COLORS[_e][1]*256+ANSI_BG_COLORS[_e][2]))[3:] for _e in ANSI_BG_COLORS}
def ansi_to_image(ansi_text, font_size=20, image_path="./test.png"):
global bg_rgb
font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
font = ImageFont.truetype(font_path, font_size)
# Split the text into lines
lines = ansi_text.split('\n')
# Calculate image size
max_width = 0
total_height = 0
line_heights = []
for line in lines:
text_width, text_height = font.getsize(line)
max_width = max(max_width, text_width)
total_height += text_height
line_heights.append(text_height)
# Create a blank image
image = Image.new('RGB', (max_width, total_height), color=bg_rgb)
draw = ImageDraw.Draw(image)
y = 0
for line, line_height in zip(lines, line_heights):
x = 0
segments = line.split('\033')
anchor_bg_color=(255,255,255)
for segment in segments:
#print(segment)
if segment and segment[-1]=='m':
code= segment[:-1]
anchor_bg_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
#text_width, text_height = draw.textsize(text, font=font)
#draw.rectangle([x, y, x + text_width, y + line_height], fill=(255, 255, 255))
#draw.text((x, y), text, font=font, fill=anchor_bg_color)
x += 0
if 'm' in segment:
code, text = segment.split('m', 1)
font_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
text_width, text_height = draw.textsize(text, font=font)
draw.rectangle([x, y, x + text_width, y + line_height], anchor_bg_color)
draw.text((x, y), text, font=font, fill=font_color)
x += text_width
else:
text = segment
text_width, text_height = draw.textsize(text, font=font)
draw.text((x, y), text, font=font, fill=(255,255,255))
x += text_width
y += line_height
# Save the image
image.save(image_path)
return image_path
# 示例ANSI文本
#ansi_content = '\033[44m555\033[0m\n111\033[41m555\033[0m'
# 將ANSI轉換為圖像
#image_path = ansi_to_image(ansi_content)
#
#---------------------------------------
def suggesting(the_pool,target_name,case_dict):
global ANSI_COLORS,_th,c_th,sug_th,corpus_dict,corpus_pd_f,vec_lst,id_lst,sen_lst,corpus_clust_label,_cluster_core_dict,_embedder
global bilstm_len,cnn_len,emb_dim,inset_th,clust_th
lst_2=[_e for _e in case_dict["p_point"]][:bilstm_len]
#for _e in lst2:
# temp=_embedder.encode(_e)
# vec_lst_2.append()
vec_lst_2=[_embedder.encode(_e) for _e in lst_2]
clst_2=[clust_search(_cluster_core_dict,_e,clust_th) for _e in vec_lst_2]
plst_2=replace_all("".join(case_dict["plaintiff"]),key_lst,sp_key,1).split(sp_key)
v_plst_2=[_embedder.encode(_e) for _e in plst_2]
print(clst_2)
rt_lst=[]
for i in tqdm(the_pool):
if target_name==i:
continue
lst_1=[_e for _e in corpus_dict[i]]
id_lst_1=[id_lst[sen_lst.index(_e)] for _e in lst_1]
vec_lst_1=[vec_lst[sen_lst.index(_e)] for _e in lst_1]#[_embedder.encode(_e) for _e in lst_1]
clst_1=[corpus_clust_label[_e] for _e in id_lst_1]#[clust_search(_cluster_core_dict,_e,0.68) for _e in vec_lst_1]
#print(clst_1)
inset=sorted([_e for _e in set(clst_1)&set(clst_2) if _e!=-1])
temp_ot={}
if len(inset)>=max(1,inset_th):
temp_ot["target"]=target_name
temp_ot["inset"]=inset
#print(len(inset))
_img=img_resize(vec2img(vec_lst_1,clst_1,vec_lst_2,clst_2,clust_th),cnn_len)
cnn_pred=cnn_model.predict(np.array([_img])/255)
_con1,_con2=[],[]
for tp_i in range(bilstm_len):
if len(lst_1)>tp_i:
_con1.append(vec_lst_1[tp_i])
else:
_con1.append([0]*emb_dim)
for tp_i in range(bilstm_len):
if len(lst_2)>tp_i:
_con2.append(vec_lst_2[tp_i])
else:
_con2.append([0]*emb_dim)
_con1=np.array([_con1])
_con2=np.array([_con2])
print(len(_con1),len(_con2),len(_con2[0]))
#_con1=list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_1))) if len(lst_1)<=bilstm_len else list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))[:bilstm_len*emb_dim]
#_con2=list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_2))) if len(lst_2)<=bilstm_len else list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))[:bilstm_len*emb_dim]
bilstm_pred=bilstm_model.predict([_con1,_con2])
temp_ot["cnn_pred"]=float(cnn_pred[0][0])
temp_ot["bilstm_pred"]=float(bilstm_pred[0][0])
#print(cnn_pred)
#print(bilstm_pred)
x_e=[[bilstm_pred[0][0],cnn_pred[0][0]]]
ensemble_pred=logistic(x_r,y_r,x_e)
temp_ot["ensemble_pred"]=float(ensemble_pred[0])
#print(ensemble_pred)
pre_lst_1=[[color_lst[inset.index(clst_1[_e]) % len(color_lst)],Fore.WHITE,lst_1[_e],Style.RESET_ALL] if clst_1[_e] in inset else [Style.RESET_ALL,lst_1[_e]] for _e in range(len(lst_1))]
pre_lst_2=[[color_lst[inset.index(clst_2[_e]) % len(color_lst)],Fore.WHITE,lst_2[_e],Style.RESET_ALL] if clst_2[_e] in inset else [Style.RESET_ALL,lst_2[_e]] for _e in range(len(lst_2))]
vlst_1=[[vec_lst_1[_e],pre_lst_1[_e][0]] for _e in range(len(pre_lst_1)) if len(pre_lst_1[_e])==4]
vlst_2=[[vec_lst_2[_e],pre_lst_2[_e][0]] for _e in range(len(pre_lst_2)) if len(pre_lst_2[_e])==4]
#print(lst_1)
plst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][0]),key_lst,sp_key,1).split(sp_key)
v_plst_1=[_embedder.encode(_e) for _e in plst_1]
cs_p1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_plst_1]
cs_p2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_plst_2]
pre_lst_p1=[[cs_p1[_e][-1],Fore.WHITE,plst_1[_e],Style.RESET_ALL] if cs_p1[_e][0]>_th else [Style.RESET_ALL,plst_1[_e]] for _e in range(len(cs_p1))]
pre_lst_p2=[[cs_p2[_e][-1],Fore.WHITE,plst_2[_e],Style.RESET_ALL] if cs_p2[_e][0]>_th else [Style.RESET_ALL,plst_2[_e]] for _e in range(len(cs_p2))]
#if max_dp<max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)]):
# max_dp=max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)])
#print(plst_1)
#print(plst_2)
#print(dlst_1)
#print(dlst_2)
draw_lst_1=["".join(_e) for _e in pre_lst_1]
draw_lst_2=["".join(_e) for _e in pre_lst_2]
draw_lst_p1=["".join(_e) for _e in pre_lst_p1]
draw_lst_p2=["".join(_e) for _e in pre_lst_p2]
#replace_all(temp_c,key_lst,",",0)
#print(plst_1)
tp_str=""
#print("---------------------")
#print(Fore.BLUE+str(i)+Style.RESET_ALL)
temp_ot["case_id"]=i
temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p1]
temp_ot["p_point_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_1]
temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p2]
temp_ot["p_point_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_2]
tp_str+=Fore.BLUE+str(i)+Style.RESET_ALL+"\n"
tp_str+=(Fore.GREEN if temp_ot["ensemble_pred"]>=0.75 else Fore.YELLOW if temp_ot["ensemble_pred"]>=0.5 else Fore.RED)+str(temp_ot["ensemble_pred"])+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p1)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---p_point_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_1)+Style.RESET_ALL+"\n"
###
tp_str+=Fore.BLUE+"target"+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p2)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---p_point_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_2)+Style.RESET_ALL+"\n"
#tp_str+="---------------------"+"\n"
temp_ot["output"]=tp_str
rt_lst.append(temp_ot)
print(tp_str)
ot=sorted(rt_lst,key=lambda x:x["ensemble_pred"],reverse=True)
ot_lst=[i["output"] for i in ot[:sug_th]]
for i in ot[:sug_th]:
file=open("./json_file/"+str(target_name).replace(",","_")+"&"+str(i["case_id"])+".json","w",encoding='utf8')
json.dump({_e:i[_e] for _e in i if _e!="output"},file,indent=4,ensure_ascii=False)
file.close()
return ot_lst,ot[:sug_th]
#---------------------------------------
_dir_lst=["../gpt4_0409_p_3/","../taide_llama3_8b_3/"]
_dir=_dir_lst[0]
sp_key="@"
emb_model="ftrob"
emb_model_path={\
"lf":"thunlp/Lawformer",\
"rob":'hfl/chinese-roberta-wwm-ext-large',\
"ftlf":"./sbert_pretrained_model/training-lawformer-clause_th10_100k_task-bs100-e2-2023-10-28/",
"ftrob":"./sbert_pretrained_model/training-roberta-clause_th10_100k_task-bs100-e2-2023-10-27",\
}
color_lst=[Back.BLUE,Back.GREEN,Back.MAGENTA,Back.YELLOW,Back.RED,Back.CYAN]#[Fore.RED,Fore.GREEN,Fore.YELLOW,Fore.BLUE,Fore.MAGENTA,Fore.CYAN]
log_f=json.load(open("./src/plaintiff_logistic_features.json","r"))["BiLSTM_CNN"]
x_r=np.array(log_f)[:,:-1]
y_r=np.array(log_f)[:,-1]
#pd_path,dis_path,s_path,v_path,c_path,t_path,cr_path,br_path=["TAIDE-LX-8B.jsonl","llama3_taide_8b_re_3_o_c.json","sentence.json","vector.json","hdb_cluster.json","hdb_ternary_array.json","hdb_cnn_result.json","hdb_sa_result.json"]
pd_f=corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
s_f=json.load(open("./src/plaintiff_corpus3835_sen.json","r"))
v_f=json.load(open("./src/plaintiff_corpus3835_vec.json","r"))#json.load(open(_dir+v_path,"r"))
o_c_f=json.load(open("./src/plaintiff_corpus3835_cluster.json","r"))["clusters"]
c_f=clust_2_dict(o_c_f)
t_f=json.load(open("./src/plaintiff_ter.json","r"))
if pool_type=="corpus3835":
corpus_clust_label=clust_label(o_c_f)
vec_lst=v_f["vector"]
id_lst=v_f["id"]
sen_lst=s_f["sentence"]
corpus_dict={}
for i in range(len(id_lst)):
fid=id_lst[i].split("@")[0]
if fid not in corpus_dict:
corpus_dict[fid]=[sen_lst[i]]
else:
corpus_dict[fid].append(sen_lst[i])
corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
else:
vec_f=json.load(open("./src/plaintiff_2022~2023_vec.json","r"))
vec_lst=[_e for i in vec_f for _e in vec_f[i]]
corpus_dict=json.load(open("./src/plaintiff_2022~2023_raw.json","r"))
corpus_pd_f=json.load(open("./src/2022~2023_raw.json","r"))["claim"]
corpus_clust_f=json.load(open("./src/plaintiff_2022~2023_clust.json","r"))
sen_lst=[_e for i in corpus_dict for _e in corpus_dict[i]]
id_lst=[i+"@"+str(_e) for i in corpus_dict for _e in range(len(corpus_dict[i]))]
corpus_clust_label={_e:corpus_clust_f[_e[:_e.find("@")]][int(_e[_e.find("@")+1:])] for _e in id_lst}
###
new_point_f=lst_2_dict(jl("../law/2022~2023/gpt-4-turbo-0409-0.3-new22_23.jsonl"))
new_pd_f=json.load(open("../law/2022~2023/new22_23_3k3_corpus_raw.json","r"))["claim"]
key_lst=[",","。","?","?","!","!",";",":",";",":"]#["。","?","?","!","!",";",":",";",":"]
_embedder = SentenceTransformer(emb_model_path[emb_model])
cnn_model =...
bilstm_model =...
"""#fifo
cnn_load()
bilstm_load()
"""
cnn_load("/cpu:0")
bilstm_load("/cpu:0")
#"""
_cluster_core_dict=clust_core(o_c_f,v_f["vector"],v_f["id"],"central")
#---------------------------------------
from colorama import Fore,Style,Back
import gradio as gr
def case_sug(file_name,plaintiff,p_point):
global new_pd_f,new_point_f,corpus_dict
print(file_name)
#print(point_f)
#print(list(pd_f.keys()).index(file_name))
if file_name not in new_pd_f:
print("file not found")
file_name="user_input"
else:
plaintiff=new_pd_f[file_name][0]
p_point=new_point_f[file_name][0]
global sug_th
p_point=p_point.split("。") if type(p_point)==type("111") else p_point
_pool=[i for i in corpus_dict]
_case_dict={"plaintiff":plaintiff,"p_point":p_point}
print(_case_dict,[type(_case_dict[_e]) for _e in _case_dict])
ot,ot_dict=suggesting(_pool,file_name,_case_dict)
#ot=[Back.BLUE+dispute+Style.RESET_ALL]*10
output_list=[]
print("-----")
print(len(ot_dict))
out_path="./out_of_range.html"
for i in range(sug_th):
if i<len(ot_dict):
_path="./html_file/test"+str(i)+".html"
output_html=ansi_to_html(ot_dict[i],_path)
#output_image = Image.open(_path)
output_list.append(_path)
else:
output_list.append(out_path)
return output_list
demo = gr.Interface(fn=case_sug, inputs=["text","text","text"], outputs=[gr.outputs.File() for i in range(sug_th)])
demo.launch(share=True,server_port=4096,show_error=True)