fbononibelloepoch
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,32 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
-
-
|
4 |
- object-detection
|
5 |
-
|
|
|
6 |
pipeline_tag: object-detection
|
|
|
7 |
---
|
8 |
|
9 |
-
#
|
10 |
|
11 |
-
This model
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
##
|
16 |
-
|
17 |
-
|
18 |
-
- **Training Data:** Blood smear images with malaria parasites
|
19 |
-
- **Input:** Blood smear microscopy images
|
20 |
-
- **Output:** Bounding boxes around detected parasites
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: ultralytics
|
5 |
tags:
|
6 |
+
- yolov8
|
7 |
- object-detection
|
8 |
+
- computer-vision
|
9 |
+
- medical-imaging
|
10 |
pipeline_tag: object-detection
|
11 |
+
inference: true
|
12 |
---
|
13 |
|
14 |
+
# Malaria Detection YOLOv8 Model
|
15 |
|
16 |
+
This model detects malaria parasites in blood smear images using YOLOv8.
|
17 |
|
18 |
+
## Model Details
|
19 |
+
- Type: Object Detection
|
20 |
+
- Architecture: YOLOv8
|
21 |
+
- Task: Malaria Parasite Detection
|
22 |
|
23 |
+
## Usage
|
24 |
+
"""
|
25 |
+
#python
|
|
|
|
|
|
|
26 |
|
27 |
+
from ultralytics import YOLO
|
28 |
+
#Load model
|
29 |
+
model = YOLO('fbononibelloepoch/malaria-detection')
|
30 |
+
#Perform inference
|
31 |
+
results = model('image.jpg')
|
32 |
+
"""
|