--- license: apache-2.0 tags: - alignment-handbook - generated_from_trainer - juanako - mistral - UNA datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: juanako-7b-UNA results: - task: type: text-generation name: TruthfulQA (MC2) dataset: name: truthful_qa type: text-generation config: multiple_choice split: validation metrics: - type: accuracy value: 65.13 verified: true - task: type: text-generation name: ARC-Challenge dataset: name: ai2_arc type: text-generation config: ARC-Challenge split: test metrics: - type: accuracy value: 68.17 verified: true - task: type: text-generation name: HellaSwag dataset: name: Rowan/hellaswag type: text-generation split: test metrics: - type: accuracy value: 85.34 verified: true - type: accuracy value: 83.57 - task: type: text-generation name: Winogrande dataset: name: winogrande type: text-generation config: winogrande_debiased split: test metrics: - type: accuracy value: 78.85 verified: true - task: type: text-generation name: MMLU dataset: name: cais/mmlu type: text-generation config: all split: test metrics: - type: accuracy value: 62.47 verified: true - task: type: text-generation name: DROP dataset: name: drop type: text-generation split: validation metrics: - type: accuracy value: 38.74 verified: true - task: type: text-generation name: PubMedQA dataset: name: bigbio/pubmed_qa type: text-generation config: pubmed_qa_artificial_bigbio_qa split: validation metrics: - type: accuracy value: 76.0 - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.17 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.34 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.47 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.13 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.85 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 44.81 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 48.37 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 30.42 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.87 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.15 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.16 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 19.68 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA name: Open LLM Leaderboard --- # juanako-7b-UNA (Uniform Neural Alignment) This model is a fine-tuned version of [fblgit/juanako-7b-UNA-v2-phase-1](https://huggingface.co./fblgit/juanako-7b-UNA-v2-phase-1) on the HuggingFaceH4/ultrafeedback_binarized dataset. It outperforms in many aspects most of the current Mistral based models and is the **latest and most powerful juanako version as of now**. ## Scores The official HuggingFace results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/fblgit/juanako-7b-UNA/results_2023-11-28T08-33-33.965228.json) | Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) | | --- | --- | --- | --- | --- | --- | --- | --- | --- | |[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 50.32 | 59.58 | 83.31 | 64.16 | 42.15 | 78.37 | 18.12 | 6.14 | | [Intel/neural-chat-7b-v3-1](https://huggingface.co./Intel/neural-chat-7b-v3-1) | 59.0 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | 43.84 | | [fblgit/juanako-7b-UNA](https://huggingface.co./fblgit/juanako-7b-UNA) | **59.91** | **68.17** | **85.34** | 62.47 | **65.13** | **78.85** | **20.7** | 38.74 | It scores: **59.91** according HuggingFace LLM Leaderboard. It scores: **65.1** with `big-refactor` branch of lm-eval-harness Author [Xavier M.](mailto:xavi@juanako.ai) @fblgit ## Model description juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published. ### Prompts The following prompts showed positive results, it may depend the task and needs further experimentation but this should work for starters: ``` <|im_start|>system - You are a helpful assistant chatbot trained by MosaicML. - You answer questions. - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|> <|im_start|>user Explain QKV<|im_end|> <|im_start|>assistant ``` ``` ### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat! ### Human: Explain QKV ### Assistant: ``` ``` [Round <|round|>] 问:Explain QKV 答: ``` ``` [Round <|round|>] Question:Explain QKV Answer: ``` ``` Question:Explain QKV Answer: ``` ## Evaluations (lm-eval big-refactor branch) ### TruthfulQA 0-Shot ``` | Tasks |Version|Filter|Metric|Value | |Stderr| |--------------|-------|------|------|-----:|---|-----:| |truthfulqa_mc2|Yaml |none |acc |0.6549|± |0.0153| ``` ### ARC 25-Shot ``` | Tasks |Version|Filter| Metric |Value | |Stderr| |-------------|-------|------|--------|-----:|---|-----:| |arc_challenge|Yaml |none |acc |0.6476|± |0.0140| | | |none |acc_norm|0.6809|± |0.0136| ``` ### HellaSwag 10-Shot ``` | Tasks |Version|Filter| Metric |Value | |Stderr| |---------|-------|------|--------|-----:|---|-----:| |hellaswag|Yaml |none |acc |0.6703|± |0.0047| | | |none |acc_norm|0.8520|± |0.0035| ``` ### GSM8k 5-Shot ``` |Tasks|Version| Filter | Metric |Value | |Stderr| |-----|-------|----------|-----------|-----:|---|-----:| |gsm8k|Yaml |get-answer|exact_match|0.4898|± |0.0138| ``` ### GPT Evaluations 0-Shot ``` | Tasks |Version|Filter| Metric |Value | |Stderr| |--------------|-------|------|----------|-----:|---|-----:| |boolq |Yaml |none |acc |0.8703|± |0.0059| |lambada_openai|Yaml |none |perplexity|3.2598|± |0.0705| | | |none |acc |0.7336|± |0.0062| |piqa |Yaml |none |acc |0.8254|± |0.0089| | | |none |acc_norm |0.8292|± |0.0088| |sciq |Yaml |none |acc |0.9580|± |0.0063| | | |none |acc_norm |0.9130|± |0.0089| ``` ### MathQA 0-Shot ``` |Tasks |Version|Filter| Metric |Value | |Stderr| |------|-------|------|--------|-----:|---|-----:| |mathqa|Yaml |none |acc |0.3752|± |0.0089| | | |none |acc_norm|0.3772|± |0.0089| ``` ### PiQa 1-Shot ``` |Tasks|Version|Filter| Metric |Value | |Stderr| |-----|-------|------|--------|-----:|---|-----:| |piqa |Yaml |none |acc |0.8308|± |0.0087| | | |none |acc_norm|0.8357|± |0.0086| ``` ### Winogrande 5-Shot ``` | Tasks |Version|Filter|Metric|Value| |Stderr| |----------|-------|------|------|----:|---|-----:| |winogrande|Yaml |none |acc |0.768|± |0.0119| ``` ### PubMedQA 0-Shot ``` | Tasks |Version|Filter|Metric|Value| |Stderr| |--------|-------|------|------|----:|---|-----:| |pubmedqa|Yaml |none |acc | 0.76|± |0.0191| ``` ### RACE 1-Shot ``` |Tasks|Version|Filter|Metric|Value | |Stderr| |-----|-------|------|------|-----:|---|-----:| |race |Yaml |none |acc |0.5282|± |0.0154| ``` ### MMLU 5-Shot (8-Bit) ``` | Groups |Version|Filter|Metric|Value | |Stderr| |------------------|-------|------|------|-----:|---|-----:| |mmlu |N/A |none |acc |0.6137|± |0.1243| | - humanities |N/A |none |acc |0.5671|± |0.1101| | - other |N/A |none |acc |0.6859|± |0.1164| | - social_sciences|N/A |none |acc |0.7195|± |0.0713| | - stem |N/A |none |acc |0.5087|± |0.1297| ``` ### DROP 3-Shot (8-Bit) (Instruct-Eval) ``` {'score': 0.49801113762927607} {'drop': 49.8} drop: 49.8 ``` ### CRASS 0-Shot (Instruct-Eval) ``` {'score': 0.8357664233576643} {'crass': 83.58} crass: 83.58 ``` ## Training Details ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 14 - gradient_accumulation_steps: 16 - total_train_batch_size: 224 - total_eval_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4795 | 0.2 | 56 | 0.4958 | -1.3684 | -2.6385 | 0.7552 | 1.2701 | -265.3887 | -241.2612 | -2.2572 | -2.4922 | | 0.4642 | 0.4 | 112 | 0.4859 | -1.0380 | -1.9769 | 0.7273 | 0.9389 | -258.7718 | -237.9569 | -2.2414 | -2.4751 | | 0.4758 | 0.61 | 168 | 0.4808 | -1.2594 | -2.3704 | 0.7343 | 1.1110 | -262.7074 | -240.1708 | -2.2305 | -2.4633 | | 0.4549 | 0.81 | 224 | 0.4768 | -1.1906 | -2.3201 | 0.7552 | 1.1295 | -262.2044 | -239.4827 | -2.2284 | -2.4610 | ### Framework versions - Transformers 4.35.0-UNA - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citations If you find juanako useful please: ``` @misc{juanako7buna, title={Juanako: Uniform Neural Alignment}, author={Xavier Murias}, year={2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://huggingface.co./fblgit/juanako-7b-UNA}}, } ``` Thanks to all the brilliant humans behind the creation of AI, here some of the ones that we find relevant to our research. If you feel a citation is missing, please contact. ``` @misc{lin2021truthfulqa, title={TruthfulQA: Measuring How Models Mimic Human Falsehoods}, author={Stephanie Lin and Jacob Hilton and Owain Evans}, year={2021}, eprint={2109.07958}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } @inproceedings{Bisk2020, author = {Yonatan Bisk and Rowan Zellers and Ronan Le Bras and Jianfeng Gao and Yejin Choi}, title = {PIQA: Reasoning about Physical Commonsense in Natural Language}, booktitle = {Thirty-Fourth AAAI Conference on Artificial Intelligence}, year = {2020}, } @software{eval-harness, author = {Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and Phang, Jason and Reynolds, Laria and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy}, title = {A framework for few-shot language model evaluation}, month = sep, year = 2021, publisher = {Zenodo}, version = {v0.0.1}, doi = {10.5281/zenodo.5371628}, url = {https://doi.org/10.5281/zenodo.5371628} } @misc{rafailov2023direct, title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model}, author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn}, year={2023}, eprint={2305.18290}, archivePrefix={arXiv}, } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__juanako-7b-UNA) | Metric |Value| |---------------------------------|----:| |Avg. |67.46| |AI2 Reasoning Challenge (25-Shot)|68.17| |HellaSwag (10-Shot) |85.34| |MMLU (5-Shot) |62.47| |TruthfulQA (0-shot) |65.13| |Winogrande (5-shot) |78.85| |GSM8k (5-shot) |44.81| # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__juanako-7b-UNA) | Metric |Value| |-------------------|----:| |Avg. |20.77| |IFEval (0-Shot) |48.37| |BBH (3-Shot) |30.42| |MATH Lvl 5 (4-Shot)| 2.87| |GPQA (0-shot) | 6.15| |MuSR (0-shot) |17.16| |MMLU-PRO (5-shot) |19.68|