File size: 18,268 Bytes
34e4844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8ac85b
34e4844
 
 
b8ac85b
 
 
34e4844
 
 
 
 
b8ac85b
34e4844
 
 
b8ac85b
 
 
34e4844
 
 
 
 
b8ac85b
34e4844
 
b8ac85b
 
 
 
 
34e4844
 
 
 
 
b8ac85b
34e4844
 
 
b8ac85b
 
 
34e4844
 
 
 
 
b8ac85b
34e4844
 
 
b8ac85b
 
 
34e4844
 
b8ac85b
34e4844
b8ac85b
34e4844
b8ac85b
34e4844
b8ac85b
 
 
34e4844
 
b8ac85b
34e4844
b8ac85b
34e4844
b8ac85b
34e4844
 
b8ac85b
 
34e4844
 
b8ac85b
34e4844
b8ac85b
 
 
 
 
 
 
 
 
 
 
 
 
 
34e4844
b8ac85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e4844
b8ac85b
 
34e4844
b8ac85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f67499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e4844
 
f322e92
34e4844
 
aee9280
d216abc
f322e92
 
 
 
3e12f69
 
 
 
f322e92
34e4844
f322e92
 
34e4844
aee9280
 
34e4844
 
 
 
f322e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e4844
 
 
 
 
f322e92
34e4844
 
 
 
 
 
f322e92
34e4844
 
 
 
 
 
f322e92
34e4844
 
 
 
 
f322e92
34e4844
 
 
 
 
 
 
 
 
 
 
f322e92
34e4844
 
 
 
 
 
f322e92
34e4844
 
 
 
 
 
f322e92
34e4844
 
 
 
 
f322e92
34e4844
 
 
 
 
f322e92
34e4844
 
 
 
 
f322e92
34e4844
 
 
 
 
 
 
 
 
f322e92
34e4844
 
 
 
 
 
f322e92
34e4844
 
 
 
 
f322e92
 
 
34e4844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d216abc
f322e92
d216abc
 
 
 
 
 
 
 
 
 
 
f322e92
34e4844
 
d216abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e4844
 
 
b8ac85b
 
 
 
 
 
 
 
 
 
 
 
 
 
6f67499
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
---
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
- juanako
- mistral
- UNA
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: juanako-7b-UNA
  results:
  - task:
      type: text-generation
      name: TruthfulQA (MC2)
    dataset:
      name: truthful_qa
      type: text-generation
      config: multiple_choice
      split: validation
    metrics:
    - type: accuracy
      value: 65.13
      verified: true
  - task:
      type: text-generation
      name: ARC-Challenge
    dataset:
      name: ai2_arc
      type: text-generation
      config: ARC-Challenge
      split: test
    metrics:
    - type: accuracy
      value: 68.17
      verified: true
  - task:
      type: text-generation
      name: HellaSwag
    dataset:
      name: Rowan/hellaswag
      type: text-generation
      split: test
    metrics:
    - type: accuracy
      value: 85.34
      verified: true
    - type: accuracy
      value: 83.57
  - task:
      type: text-generation
      name: Winogrande
    dataset:
      name: winogrande
      type: text-generation
      config: winogrande_debiased
      split: test
    metrics:
    - type: accuracy
      value: 78.85
      verified: true
  - task:
      type: text-generation
      name: MMLU
    dataset:
      name: cais/mmlu
      type: text-generation
      config: all
      split: test
    metrics:
    - type: accuracy
      value: 62.47
      verified: true
  - task:
      type: text-generation
      name: DROP
    dataset:
      name: drop
      type: text-generation
      split: validation
    metrics:
    - type: accuracy
      value: 38.74
      verified: true
  - task:
      type: text-generation
      name: PubMedQA
    dataset:
      name: bigbio/pubmed_qa
      type: text-generation
      config: pubmed_qa_artificial_bigbio_qa
      split: validation
    metrics:
    - type: accuracy
      value: 76.0
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.17
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.34
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 62.47
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 65.13
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.85
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 44.81
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 48.37
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 30.42
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.87
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.15
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.16
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 19.68
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/juanako-7b-UNA
      name: Open LLM Leaderboard
---

# juanako-7b-UNA (Uniform Neural Alignment)

This model is a fine-tuned version of [fblgit/juanako-7b-UNA-v2-phase-1](https://huggingface.co./fblgit/juanako-7b-UNA-v2-phase-1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It outperforms in many aspects most of the current Mistral based models and is the **latest and most powerful juanako version as of now**.

## Scores

The official HuggingFace results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/fblgit/juanako-7b-UNA/results_2023-11-28T08-33-33.965228.json)

| Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 50.32 | 59.58  | 83.31  | 64.16  | 42.15 | 78.37 | 18.12 | 6.14 |
| [Intel/neural-chat-7b-v3-1](https://huggingface.co./Intel/neural-chat-7b-v3-1) | 59.0 | 66.21 | 83.64 | 62.37  | 59.65 | 78.14 | 19.56 | 43.84 |
| [fblgit/juanako-7b-UNA](https://huggingface.co./fblgit/juanako-7b-UNA) | **59.91** | **68.17** | **85.34** | 62.47  | **65.13** | **78.85** | **20.7** | 38.74 |

It scores: **59.91** according HuggingFace LLM Leaderboard.
It scores: **65.1** with `big-refactor` branch of lm-eval-harness

Author [Xavier M.](mailto:[email protected]) @fblgit

## Model description

juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published.

### Prompts
The following prompts showed positive results, it may depend the task and needs further experimentation but this should work for starters:
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!

### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```

## Evaluations (lm-eval big-refactor branch)

### TruthfulQA 0-Shot
```
|    Tasks     |Version|Filter|Metric|Value |   |Stderr|
|--------------|-------|------|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml   |none  |acc   |0.6549|±  |0.0153|
```
### ARC 25-Shot
```
|    Tasks    |Version|Filter| Metric |Value |   |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |acc     |0.6476|±  |0.0140|
|             |       |none  |acc_norm|0.6809|±  |0.0136|
```
### HellaSwag 10-Shot
```
|  Tasks  |Version|Filter| Metric |Value |   |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |acc     |0.6703|±  |0.0047|
|         |       |none  |acc_norm|0.8520|±  |0.0035|
```
### GSM8k 5-Shot
```
|Tasks|Version|  Filter  |  Metric   |Value |   |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|exact_match|0.4898|±  |0.0138|
```
### GPT Evaluations 0-Shot
```
|    Tasks     |Version|Filter|  Metric  |Value |   |Stderr|
|--------------|-------|------|----------|-----:|---|-----:|
|boolq         |Yaml   |none  |acc       |0.8703|±  |0.0059|
|lambada_openai|Yaml   |none  |perplexity|3.2598|±  |0.0705|
|              |       |none  |acc       |0.7336|±  |0.0062|
|piqa          |Yaml   |none  |acc       |0.8254|±  |0.0089|
|              |       |none  |acc_norm  |0.8292|±  |0.0088|
|sciq          |Yaml   |none  |acc       |0.9580|±  |0.0063|
|              |       |none  |acc_norm  |0.9130|±  |0.0089|
```
### MathQA 0-Shot
```
|Tasks |Version|Filter| Metric |Value |   |Stderr|
|------|-------|------|--------|-----:|---|-----:|
|mathqa|Yaml   |none  |acc     |0.3752|±  |0.0089|
|      |       |none  |acc_norm|0.3772|±  |0.0089|
```
### PiQa 1-Shot
```
|Tasks|Version|Filter| Metric |Value |   |Stderr|
|-----|-------|------|--------|-----:|---|-----:|
|piqa |Yaml   |none  |acc     |0.8308|±  |0.0087|
|     |       |none  |acc_norm|0.8357|±  |0.0086|
```
### Winogrande 5-Shot
```
|  Tasks   |Version|Filter|Metric|Value|   |Stderr|
|----------|-------|------|------|----:|---|-----:|
|winogrande|Yaml   |none  |acc   |0.768|±  |0.0119|
```
### PubMedQA 0-Shot
```
| Tasks  |Version|Filter|Metric|Value|   |Stderr|
|--------|-------|------|------|----:|---|-----:|
|pubmedqa|Yaml   |none  |acc   | 0.76|±  |0.0191|
```
### RACE 1-Shot
```
|Tasks|Version|Filter|Metric|Value |   |Stderr|
|-----|-------|------|------|-----:|---|-----:|
|race |Yaml   |none  |acc   |0.5282|±  |0.0154|
```
### MMLU 5-Shot (8-Bit)
```
|      Groups      |Version|Filter|Metric|Value |   |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu              |N/A    |none  |acc   |0.6137|±  |0.1243|
| - humanities     |N/A    |none  |acc   |0.5671|±  |0.1101|
| - other          |N/A    |none  |acc   |0.6859|±  |0.1164|
| - social_sciences|N/A    |none  |acc   |0.7195|±  |0.0713|
| - stem           |N/A    |none  |acc   |0.5087|±  |0.1297|
```
### DROP 3-Shot (8-Bit) (Instruct-Eval)
```
{'score': 0.49801113762927607}
{'drop': 49.8}
drop: 49.8
```

### CRASS 0-Shot (Instruct-Eval)
```
{'score': 0.8357664233576643}
{'crass': 83.58}
crass: 83.58
```

## Training Details

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 14
- gradient_accumulation_steps: 16
- total_train_batch_size: 224
- total_eval_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4795        | 0.2   | 56   | 0.4958          | -1.3684        | -2.6385          | 0.7552             | 1.2701          | -265.3887      | -241.2612    | -2.2572         | -2.4922       |
| 0.4642        | 0.4   | 112  | 0.4859          | -1.0380        | -1.9769          | 0.7273             | 0.9389          | -258.7718      | -237.9569    | -2.2414         | -2.4751       |
| 0.4758        | 0.61  | 168  | 0.4808          | -1.2594        | -2.3704          | 0.7343             | 1.1110          | -262.7074      | -240.1708    | -2.2305         | -2.4633       |
| 0.4549        | 0.81  | 224  | 0.4768          | -1.1906        | -2.3201          | 0.7552             | 1.1295          | -262.2044      | -239.4827    | -2.2284         | -2.4610       |


### Framework versions

- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1

## Citations
If you find juanako useful please:

```
@misc{juanako7buna,
  title={Juanako: Uniform Neural Alignment}, 
  author={Xavier Murias},
  year={2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co./fblgit/juanako-7b-UNA}},
}
```

Thanks to all the brilliant humans behind the creation of AI, here some of the ones that we find relevant to our research. If you feel a citation is missing, please contact.
```
@misc{lin2021truthfulqa,
  title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
  author={Stephanie Lin and Jacob Hilton and Owain Evans},
  year={2021},
  eprint={2109.07958},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@inproceedings{Bisk2020,
  author = {Yonatan Bisk and Rowan Zellers and
            Ronan Le Bras and Jianfeng Gao
            and Yejin Choi},
  title = {PIQA: Reasoning about Physical Commonsense in
           Natural Language},
  booktitle = {Thirty-Fourth AAAI Conference on
               Artificial Intelligence},
  year = {2020},
}
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
    title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model}, 
    author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
    year={2023},
    eprint={2305.18290},
    archivePrefix={arXiv},
}
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__juanako-7b-UNA)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.46|
|AI2 Reasoning Challenge (25-Shot)|68.17|
|HellaSwag (10-Shot)              |85.34|
|MMLU (5-Shot)                    |62.47|
|TruthfulQA (0-shot)              |65.13|
|Winogrande (5-shot)              |78.85|
|GSM8k (5-shot)                   |44.81|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__juanako-7b-UNA)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |20.77|
|IFEval (0-Shot)    |48.37|
|BBH (3-Shot)       |30.42|
|MATH Lvl 5 (4-Shot)| 2.87|
|GPQA (0-shot)      | 6.15|
|MuSR (0-shot)      |17.16|
|MMLU-PRO (5-shot)  |19.68|