--- language: - en license: other library_name: transformers tags: - generated_from_trainer base_model: - Qwen/Qwen2.5-7B-Instruct datasets: - Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1 license_name: qwen license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE model-index: - name: cybertron-v4-qw7B-UNAMGS results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 60.84 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 37.71 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 29.91 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.85 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 12.69 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.89 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-UNAMGS name: Open LLM Leaderboard --- # cybertron-v4-qw7B-UNAMGS **UNA IS BACK** Cybertron v4 UNA-MGS, Based on the amazing Qwen2.5 7B **SCORING #1 7-8B LLM WITH NO CONTAMINATION 21.11.2024 with avg. 31.82** ![cybertron-v4-MGS](https://huggingface.co./fblgit/cybertron-v4-qw7B-MGS/resolve/main/cybertron_v4MGS.png) This special edition went thru UNA at MLP layers just like [miniclaus-1.5B](https://huggingface.co./fblgit/miniclaus-qw1.5B-UNAMGS) Here we use our novel approach called `MGS`. Its up to you to figure out what it means. On top of that we used `UNA: Uniform Neural Alignment` Cybertron V4 went thru SFT with `MGS & UNA` over `Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1` dataset. ## Contamination Benchmark https://gair-nlp.github.io/benbench/ - MATH: ``` 5gram-Qwen2.5-7B-Instruct-orgn-MATH-test.jsonl: 37.52666666666667 5gram-Qwen2.5-7B-Instruct-orgn-MATH-train.jsonl: 46.36666666666667 ``` vs ``` 5gram-UNA-cybertron-v4-qw7B-MGS-orgn-MATH-test.jsonl: 37.42666666666667 5gram-UNA-cybertron-v4-qw7B-MGS-orgn-MATH-train.jsonl: 46.053333333333335 ``` vs ``` 5gram-Homer-v0.5-orgn-MATH-test.jsonl: 38.77333333333333 5gram-Homer-v0.5-orgn-MATH-train.jsonl: 47.16666666666667 ``` ## Quantz Available at bartowski repo https://huggingface.co./bartowski/cybertron-v4-qw7B-UNAMGS-GGUF # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__cybertron-v4-qw7B-UNAMGS) | Metric |Value| |-------------------|----:| |Avg. |31.82| |IFEval (0-Shot) |60.84| |BBH (3-Shot) |37.71| |MATH Lvl 5 (4-Shot)|29.91| |GPQA (0-shot) |10.85| |MuSR (0-shot) |12.69| |MMLU-PRO (5-shot) |38.89| ## MGS & UNA & Details * MGS, `1+1 = 2 and not 3` * UNA, `1+1 = 2 obviously` We also followed https://arxiv.org/pdf/2410.21228 insights. ## Training procedure 1 Epoch as usual. [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl) ``` datasets: - path: Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1 split: train type: chat_template field_messages: conversations message_field_role: from message_field_content: value roles: user: ["human", "user"] assistant: ["gpt", "assistant", "ai"] system: ["system"] ``` ### Training hyperparameters The following hyperparameters were used during training: - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7824 | 0.0003 | 1 | 0.5555 | | 0.5489 | 0.0503 | 144 | 0.4848 | | 0.5348 | 0.1006 | 288 | 0.4732 | | 0.5256 | 0.1509 | 432 | 0.4670 | | 0.5172 | 0.2012 | 576 | 0.4621 | | 0.4882 | 0.2515 | 720 | 0.4578 | | 0.4848 | 0.3018 | 864 | 0.4550 | | 0.4678 | 0.3520 | 1008 | 0.4522 | | 0.4686 | 0.4023 | 1152 | 0.4502 | | 0.4775 | 0.4526 | 1296 | 0.4474 | | 0.4464 | 0.5029 | 1440 | 0.4454 | | 0.4772 | 0.5532 | 1584 | 0.4438 | | 0.4546 | 0.6035 | 1728 | 0.4425 | | 0.4661 | 0.6538 | 1872 | 0.4411 | | 0.4569 | 0.7041 | 2016 | 0.4399 | | 0.4529 | 0.7544 | 2160 | 0.4390 | | 0.4409 | 0.8047 | 2304 | 0.4380 | | 0.4405 | 0.8550 | 2448 | 0.4370 | | 0.4642 | 0.9053 | 2592 | 0.4363 | | 0.4566 | 0.9556 | 2736 | 0.4359 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 (UNA & MGS patch) - Pytorch 2.3.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1 ## Citations ``` @misc{thebeagle-v2, title={TheBeagle v2: MGS}, author={Xavier Murias}, year={2024}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://huggingface.co./fblgit/TheBeagle-v2beta-32B-MGS}}, } @misc{Magpie, title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin}, year={2024}, eprint={2406.08464}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } @article{xu2024benchmarking, title={Benchmarking Benchmark Leakage in Large Language Models}, author={Xu, Ruijie and Wang, Zengzhi and Fan, Run-Ze and Liu, Pengfei}, year={2024}, journal={arXiv preprint arXiv:2404.18824}, url={https://arxiv.org/abs/2404.18824} } ```