--- language: - en license: other library_name: transformers tags: - generated_from_trainer base_model: - Qwen/Qwen2.5-7B-Instruct datasets: - Magpie-Align/Magpie-Qwen2.5-Pro-300K-Filtered license_name: qwen license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE model-index: - name: cybertron-v4-qw7B-MGS results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 62.64 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 37.04 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 27.72 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 8.05 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.2 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.59 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/cybertron-v4-qw7B-MGS name: Open LLM Leaderboard --- # cybertron-v4-qw7B-MGS Introducing: **cybertron-v4** based on Qwen2.5 7B SFT over Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1 ## Training procedure 1 Epoch as usual. [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl) ### Training hyperparameters The following hyperparameters were used during training: - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7405 | 0.0007 | 1 | 0.5760 | | 0.6146 | 0.0502 | 71 | 0.5045 | | 0.5908 | 0.1003 | 142 | 0.4930 | | 0.5669 | 0.1505 | 213 | 0.4854 | | 0.5575 | 0.2007 | 284 | 0.4811 | | 0.535 | 0.2508 | 355 | 0.4765 | | 0.5161 | 0.3010 | 426 | 0.4736 | | 0.5268 | 0.3511 | 497 | 0.4726 | | 0.5119 | 0.4013 | 568 | 0.4701 | | 0.5329 | 0.4515 | 639 | 0.4687 | | 0.5167 | 0.5016 | 710 | 0.4673 | | 0.5105 | 0.5518 | 781 | 0.4660 | | 0.5203 | 0.6020 | 852 | 0.4653 | | 0.5035 | 0.6521 | 923 | 0.4646 | | 0.4903 | 0.7023 | 994 | 0.4641 | | 0.5031 | 0.7525 | 1065 | 0.4628 | | 0.5147 | 0.8026 | 1136 | 0.4629 | | 0.5037 | 0.8528 | 1207 | 0.4620 | | 0.5029 | 0.9029 | 1278 | 0.4620 | | 0.492 | 0.9531 | 1349 | 0.4621 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__cybertron-v4-qw7B-MGS) | Metric |Value| |-------------------|----:| |Avg. |31.21| |IFEval (0-Shot) |62.64| |BBH (3-Shot) |37.04| |MATH Lvl 5 (4-Shot)|27.72| |GPQA (0-shot) | 8.05| |MuSR (0-shot) |13.20| |MMLU-PRO (5-shot) |38.59|