File size: 10,429 Bytes
71938a3
 
 
23107ed
71938a3
 
 
 
 
 
23107ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71938a3
2400e03
 
 
 
71938a3
2400e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db160d4
 
8dbecd6
db160d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23107ed
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- UNA
- juanako
- mixtral
- MoE
model-index:
- name: UNAversal-8x7B-v1beta
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.8
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.9
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.39
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.97
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.0
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.64
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
      name: Open LLM Leaderboard
---
# UNAversal - Uniform Neural Alignment (MoE)

This is just a beta, a first release so people can start working on franksteins and so.
It does achieve high GSM/Math and TQA, so ideally you can merge it with other mixtrals and see what coming out of it
Based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1)

## UNA Details
For this model we came out with the most obvious, placing UNA on the router_logit. It does work, but we saw a much better performance on SFT by doing so.
So this model DOES have UNA-SFT phase, its highly experimental and it was merely using LLaMA-Factory datasets by example alpaca.

As the others:
- Can be finetuned further, try 2e-5 or **1e-4 (since its MOE)**
- Can be merged, here you will have to improvise and please report findings on a discussion thread.

**REMINDER**: please.. cite, it does help on the research and the lab itself, seriously.

## NEED YOUR HELP!!
I need a multi-turn trainloop for the Mixtral, that can squeeze the juice out of 8xH100's properly. Please feel free to reach @fblgit either discord or twitter. thanks!

# Evals
Here there are some, but we also submitted it to the HF eval queue....

## GSM8k 5-Shot
```
|Tasks|Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|     5|exact_match|0.6603|±  | 0.013|
```
## ARC 25-Shot
```
|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |    25|acc     |0.6621|±  |0.0138|
|             |       |none  |    25|acc_norm|0.6962|±  |0.0134|
```

## TruthfulQA 0-Shot (MC2)
```
|    Tasks     |Version|Filter|n-shot|Metric|Value |   |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml   |none  |     0|acc   |0.7122|±  |0.0141|
```

## 0-Shots Evals
```
|    Tasks     |Version|Filter|n-shot|  Metric  |Value |   |Stderr|
|--------------|-------|------|-----:|----------|-----:|---|-----:|
|arc_challenge |Yaml   |none  |     0|acc       |0.6101|±  |0.0143|
|              |       |none  |     0|acc_norm  |0.6425|±  |0.0140|
|arc_easy      |Yaml   |none  |     0|acc       |0.8615|±  |0.0071|
|              |       |none  |     0|acc_norm  |0.8375|±  |0.0076|
|boolq         |Yaml   |none  |     0|acc       |0.8624|±  |0.0060|
|lambada_openai|Yaml   |none  |     0|perplexity|2.8318|±  |0.0507|
|              |       |none  |     0|acc       |0.7650|±  |0.0059|
|mathqa        |Yaml   |none  |     0|acc       |0.4472|±  |0.0091|
|              |       |none  |     0|acc_norm  |0.4436|±  |0.0091|
|piqa          |Yaml   |none  |     0|acc       |0.8292|±  |0.0088|
|              |       |none  |     0|acc_norm  |0.8422|±  |0.0085|
|pubmedqa      |Yaml   |none  |     0|acc       |0.7920|±  |0.0182|
|sciq          |Yaml   |none  |     0|acc       |0.9630|±  |0.0060|
|              |       |none  |     0|acc_norm  |0.9370|±  |0.0077|
```

## BBH at 0-Shot
```
vllm (pretrained=fblgit/UNAversal-8x7B-v1beta,tensor_parallel_size=2,data_parallel_size=4,gpu_memory_utilization=0.8,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: auto
|                          Tasks                           |Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|----------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh                                                       |N/A    |get-answer|     0|exact_match|0.6752|±  |0.1772|
| - bbh_cot_fewshot_boolean_expressions                    |Yaml   |get-answer|     0|exact_match|0.8840|±  |0.0203|
| - bbh_cot_fewshot_causal_judgement                       |Yaml   |get-answer|     0|exact_match|0.6417|±  |0.0352|
| - bbh_cot_fewshot_date_understanding                     |Yaml   |get-answer|     0|exact_match|0.7600|±  |0.0271|
| - bbh_cot_fewshot_disambiguation_qa                      |Yaml   |get-answer|     0|exact_match|0.7160|±  |0.0286|
| - bbh_cot_fewshot_dyck_languages                         |Yaml   |get-answer|     0|exact_match|0.1800|±  |0.0243|
| - bbh_cot_fewshot_formal_fallacies                       |Yaml   |get-answer|     0|exact_match|0.6520|±  |0.0302|
| - bbh_cot_fewshot_geometric_shapes                       |Yaml   |get-answer|     0|exact_match|0.3880|±  |0.0309|
| - bbh_cot_fewshot_hyperbaton                             |Yaml   |get-answer|     0|exact_match|0.9600|±  |0.0124|
| - bbh_cot_fewshot_logical_deduction_five_objects         |Yaml   |get-answer|     0|exact_match|0.5360|±  |0.0316|
| - bbh_cot_fewshot_logical_deduction_seven_objects        |Yaml   |get-answer|     0|exact_match|0.5040|±  |0.0317|
| - bbh_cot_fewshot_logical_deduction_three_objects        |Yaml   |get-answer|     0|exact_match|0.8600|±  |0.0220|
| - bbh_cot_fewshot_movie_recommendation                   |Yaml   |get-answer|     0|exact_match|0.7840|±  |0.0261|
| - bbh_cot_fewshot_multistep_arithmetic_two               |Yaml   |get-answer|     0|exact_match|0.6600|±  |0.0300|
| - bbh_cot_fewshot_navigate                               |Yaml   |get-answer|     0|exact_match|0.8160|±  |0.0246|
| - bbh_cot_fewshot_object_counting                        |Yaml   |get-answer|     0|exact_match|0.8360|±  |0.0235|
| - bbh_cot_fewshot_penguins_in_a_table                    |Yaml   |get-answer|     0|exact_match|0.7329|±  |0.0367|
| - bbh_cot_fewshot_reasoning_about_colored_objects        |Yaml   |get-answer|     0|exact_match|0.8120|±  |0.0248|
| - bbh_cot_fewshot_ruin_names                             |Yaml   |get-answer|     0|exact_match|0.4440|±  |0.0315|
| - bbh_cot_fewshot_salient_translation_error_detection    |Yaml   |get-answer|     0|exact_match|0.5200|±  |0.0317|
| - bbh_cot_fewshot_snarks                                 |Yaml   |get-answer|     0|exact_match|0.7135|±  |0.0340|
| - bbh_cot_fewshot_sports_understanding                   |Yaml   |get-answer|     0|exact_match|0.9400|±  |0.0151|
| - bbh_cot_fewshot_temporal_sequences                     |Yaml   |get-answer|     0|exact_match|0.7560|±  |0.0272|
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects |Yaml   |get-answer|     0|exact_match|0.5680|±  |0.0314|
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|Yaml   |get-answer|     0|exact_match|0.6280|±  |0.0306|
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|Yaml   |get-answer|     0|exact_match|0.6280|±  |0.0306|
| - bbh_cot_fewshot_web_of_lies                            |Yaml   |get-answer|     0|exact_match|0.9560|±  |0.0130|
| - bbh_cot_fewshot_word_sorting                           |Yaml   |get-answer|     0|exact_match|0.3800|±  |0.0308|

|Groups|Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh   |N/A    |get-answer|     0|exact_match|0.6752|±  |0.1772|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_fblgit__UNAversal-8x7B-v1beta)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.78|
|AI2 Reasoning Challenge (25-Shot)|69.80|
|HellaSwag (10-Shot)              |86.90|
|MMLU (5-Shot)                    |70.39|
|TruthfulQA (0-shot)              |71.97|
|Winogrande (5-shot)              |82.00|
|GSM8k (5-shot)                   |61.64|