File size: 2,245 Bytes
272ea5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
license: llama3.2
library_name: transformers
tags:
- autoround
- intel
- gptq
- woq
- meta
- pytorch
- llama
- llama-3
model_name: Llama 3.2 1B Instruct
base_model: meta-llama/Llama-3.2-1B-Instruct
inference: false
model_creator: meta-llama
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [meta-llama/Llama-3.2-1B-Instruct](meta-llama/Llama-3.2-1B-Instruct) using torch.float32 for quantization tuning.
- 4 bits (INT4)
- group size = 128
- Asymmetrical Quantization
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
Note: this INT4 version of Llama-3.2-1B-Instruct has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
python -m pip install <package> --upgrade
```
- accelerate==1.0.1
- auto_gptq==0.7.1
- neural_compressor==3.1
- torch==2.3.0+cpu
- torchaudio==2.5.0+cpu
- torchvision==0.18.0+cpu
- transformers==4.45.2
### Step 2 Build Intel Autoround wheel from sources
```
python -m pip install git+https://github.com/intel/auto-round.git
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "meta-llama/Llama-3.2-1B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym = 4, 128, False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
autoround.quantize()
output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-Instruct-auto_round-int4-gs128-asym"
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
```
## License
[Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE)
## Disclaimer
This quantized model comes with no warrenty. It has been developed only for research purposes.
|