--- language: - it tags: - pretrained - pytorch - causal-lm - autoround - intel-autoround - woq - awq - autoawq - auto-awq - intel - italia - italiano - italian license: mit license_link: https://huggingface.co./iGeniusAI/Italia-9B-Instruct-v0.1/blob/main/LICENSE model_name: Italia 9B Instruct v0.1 base_model: - iGeniusAI/Italia-9B-Instruct-v0.1 inference: false model_creator: iGeniusAI pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [iGeniusAI/Italia-9B-Instruct-v0.1](https://huggingface.co./iGeniusAI/Italia-9B-Instruct-v0.1) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method AutoAWQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3 Note: this INT4 version of Italia-9B-Instruct-v0.1 has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer, GPTNeoXModel model_name = "iGeniusAI/Italia-9B-Instruct-v0.1" model = GPTNeoXModel.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/iGeniusAI_Italia-9B-Instruct-v0.1-autoawq-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_awq', inplace=True) ``` Note: the `GPTNeoXSdpaAttention` class is deprecated in favor of simply modifying the `config._attn_implementation`attribute of the `GPTNeoXAttention` class. So this require transformers<4.48. ## License [MIT](https://huggingface.co./iGeniusAI/Italia-9B-Instruct-v0.1/blob/main/LICENSE) ## Disclaimer This quantized model comes with no warranty. It has been developed only for research purposes.