fbaldassarri
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- de
|
5 |
+
- fr
|
6 |
+
- it
|
7 |
+
- pt
|
8 |
+
- hi
|
9 |
+
- es
|
10 |
+
- th
|
11 |
+
license: apache-2.0
|
12 |
+
library_name: transformers
|
13 |
+
tags:
|
14 |
+
- autoround
|
15 |
+
- intel
|
16 |
+
- gptq
|
17 |
+
- woq
|
18 |
+
- meta
|
19 |
+
- pytorch
|
20 |
+
- transformers
|
21 |
+
model_name: SmolLM2 1.7B Instruct
|
22 |
+
base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
|
23 |
+
inference: false
|
24 |
+
model_creator: HuggingFaceTB
|
25 |
+
pipeline_tag: text-generation
|
26 |
+
prompt_template: '{prompt}
|
27 |
+
'
|
28 |
+
quantized_by: fbaldassarri
|
29 |
+
---
|
30 |
+
|
31 |
+
## Model Information
|
32 |
+
|
33 |
+
Quantized version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](HuggingFaceTB/SmolLM2-1.7B-Instruct) using torch.float32 for quantization tuning.
|
34 |
+
- 4 bits (INT4)
|
35 |
+
- group size = 128
|
36 |
+
- Symmetrical Quantization
|
37 |
+
- Method AutoRound (WOQ)
|
38 |
+
|
39 |
+
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
|
40 |
+
|
41 |
+
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
|
42 |
+
|
43 |
+
Note: this INT4 version of SmolLM2-1.7B-Instruct has been quantized to run inference through CPU.
|
44 |
+
|
45 |
+
## Replication Recipe
|
46 |
+
|
47 |
+
### Step 1 Install Requirements
|
48 |
+
|
49 |
+
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
50 |
+
|
51 |
+
```
|
52 |
+
python -m pip install <package> --upgrade
|
53 |
+
```
|
54 |
+
|
55 |
+
- accelerate==1.0.1
|
56 |
+
- auto_gptq==0.7.1
|
57 |
+
- neural_compressor==3.1
|
58 |
+
- torch==2.3.0+cpu
|
59 |
+
- torchaudio==2.5.0+cpu
|
60 |
+
- torchvision==0.18.0+cpu
|
61 |
+
- transformers==4.45.2
|
62 |
+
|
63 |
+
### Step 2 Build Intel Autoround wheel from sources
|
64 |
+
|
65 |
+
```
|
66 |
+
python -m pip install git+https://github.com/intel/auto-round.git
|
67 |
+
```
|
68 |
+
|
69 |
+
### Step 3 Script for Quantization
|
70 |
+
|
71 |
+
```
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
+
from auto_round import AutoRound
|
77 |
+
bits, group_size, sym = 4, 128, True
|
78 |
+
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
|
79 |
+
autoround.quantize()
|
80 |
+
output_dir = "./AutoRound/HuggingFaceTB_SmolLM2-1.7B-Instruct-auto_round-int4-gs128-sym"
|
81 |
+
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
82 |
+
```
|
83 |
+
|
84 |
+
## License
|
85 |
+
|
86 |
+
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
|
87 |
+
|
88 |
+
## Disclaimer
|
89 |
+
|
90 |
+
This quantized model comes with no warrenty. It has been developed only for research purposes.
|
91 |
+
|