--- base_model: rafalposwiata/deproberta-large-v1 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: depression_tweet results: [] --- # depression_tweet This model is a fine-tuned version of [rafalposwiata/deproberta-large-v1](https://huggingface.co./rafalposwiata/deproberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Accuracy: 0.9836 - Precision: 0.9656 - Recall: 0.9977 - F1: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.2 | 50 | 0.1556 | 0.9684 | 0.9508 | 0.9777 | 0.9641 | | No log | 0.4 | 100 | 0.1399 | 0.9646 | 0.9354 | 0.9865 | 0.9603 | | No log | 0.61 | 150 | 0.1118 | 0.9631 | 0.9279 | 0.9920 | 0.9589 | | No log | 0.81 | 200 | 0.1090 | 0.9659 | 0.9333 | 0.9922 | 0.9619 | | No log | 1.01 | 250 | 0.0819 | 0.9759 | 0.9556 | 0.9905 | 0.9727 | | No log | 1.21 | 300 | 0.0548 | 0.9831 | 0.9831 | 0.9777 | 0.9804 | | No log | 1.42 | 350 | 0.1162 | 0.9587 | 0.9435 | 0.9624 | 0.9529 | | No log | 1.62 | 400 | 0.1167 | 0.9657 | 0.9303 | 0.9955 | 0.9618 | | No log | 1.82 | 450 | 0.0859 | 0.9776 | 0.9549 | 0.9955 | 0.9747 | | 0.0575 | 2.02 | 500 | 0.0564 | 0.9848 | 0.9707 | 0.9950 | 0.9827 | | 0.0575 | 2.23 | 550 | 0.0591 | 0.9839 | 0.9693 | 0.9945 | 0.9817 | | 0.0575 | 2.43 | 600 | 0.0913 | 0.9814 | 0.9623 | 0.9962 | 0.9790 | | 0.0575 | 2.63 | 650 | 0.0633 | 0.9847 | 0.9686 | 0.9970 | 0.9826 | | 0.0575 | 2.83 | 700 | 0.1171 | 0.9762 | 0.9493 | 0.9985 | 0.9733 | | 0.0575 | 3.04 | 750 | 0.0646 | 0.9836 | 0.9656 | 0.9977 | 0.9814 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.1