--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: car_manufacturer_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3394495412844037 --- # car_manufacturer_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.7826 - Accuracy: 0.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 3.1387 | 0.2018 | | 2.8998 | 2.0 | 14 | 3.1029 | 0.2018 | | 2.7326 | 3.0 | 21 | 3.0453 | 0.2294 | | 2.7326 | 4.0 | 28 | 3.0104 | 0.2385 | | 2.5797 | 5.0 | 35 | 2.9655 | 0.2477 | | 2.4873 | 6.0 | 42 | 2.9166 | 0.3211 | | 2.4873 | 7.0 | 49 | 2.9122 | 0.2569 | | 2.3408 | 8.0 | 56 | 2.8122 | 0.3119 | | 2.2696 | 9.0 | 63 | 2.8159 | 0.3578 | | 2.1527 | 10.0 | 70 | 2.8589 | 0.2752 | | 2.1527 | 11.0 | 77 | 2.8248 | 0.2936 | | 2.0649 | 12.0 | 84 | 2.7709 | 0.2936 | | 2.0855 | 13.0 | 91 | 2.8183 | 0.2477 | | 2.0855 | 14.0 | 98 | 2.7552 | 0.2569 | | 1.9347 | 15.0 | 105 | 2.7826 | 0.3394 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0