--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-sm-el-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - name: Wer type: wer value: 20.63521545319465 --- # Whisper-Small (el) for Transcription This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Wer: 20.6352 ## Model description This model is trained for transcription on the Greek subset on mozilla-foundation/common_voice_11_0 interleaved splits train+eval ## Intended uses & limitations This is part of the Whisper Finetuning Event (December 2022) ## Training and evaluation data Training used interleaved splits: train + evaluation. Evaluation was done on the test split. Data was streamed from Hugging Face's Hub. ## Training procedure The script used has been uploaded in the files of this space The command to run it was: ``` python ./run_speech_recognition_seq2seq_streaming.py \ --model_name_or_path "openai/whisper-small" \ --model_revision "main" \ --do_train True \ --do_eval True \ --use_auth_token False \ --freeze_encoder False \ --model_index_name "whisper-sm-el-xs" \ --dataset_name "mozilla-foundation/common_voice_11_0" \ --dataset_config_name "el" \ --audio_column_name "audio" \ --text_column_name "sentence" \ --max_duration_in_seconds 30 \ --train_split_name "train+validation" \ --eval_split_name "test" \ --do_lower_case False \ --do_remove_punctuation False \ --do_normalize_eval True \ --language "greek" \ --task "transcribe" \ --shuffle_buffer_size 500 \ --output_dir "./data/finetuningRuns/whisper-sm-el-xs" \ --per_device_train_batch_size 16 \ --gradient_accumulation_steps 4 \ --learning_rate 1e-5 \ --warmup_steps 500 \ --max_steps 5000 \ --gradient_checkpointing True \ --fp16 True \ --evaluation_strategy "steps" \ --per_device_eval_batch_size 8 \ --predict_with_generate True \ --generation_max_length 225 \ --save_steps 1000 \ --eval_steps 1000 \ --logging_steps 25 \ --report_to "tensorboard" \ --load_best_model_at_end True \ --metric_for_best_model "wer" \ --greater_is_better False \ --push_to_hub False \ --overwrite_output_dir True ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0024 | 18.01 | 1000 | 0.4246 | 21.0438 | | 0.0003 | 37.01 | 2000 | 0.4805 | 20.6352 | | 0.0001 | 56.01 | 3000 | 0.5102 | 20.8395 | | 0.0001 | 75.0 | 4000 | 0.5296 | 21.0717 | | 0.0001 | 94.0 | 5000 | 0.5375 | 21.0253 | Here is the summary from the log of the run: ``` ***** train metrics ***** epoch = 94.0 train_loss = 0.0222 train_runtime = 23:06:13.19 train_samples_per_second = 3.847 train_steps_per_second = 0.06 12/08/2022 11:20:17 - INFO - __main__ - *** Evaluate *** ***** eval metrics ***** epoch = 94.0 eval_loss = 0.4805 eval_runtime = 0:23:03.68 eval_samples_per_second = 1.226 eval_steps_per_second = 0.153 eval_wer = 20.6352 Thu 08 Dec 2022 11:43:22 AM EST ``` ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1