--- language: - el license: apache-2.0 tags: - hf-asr-leaderboard - whisper-large - mozilla-foundation/common_voice_11_0 - greek - whisper-event - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-lg-el-intlv-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 9.8997 --- # whisper-lg-el-intlv-xs This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr dataset. It achieves the following results on the evaluation set: - Loss: 0.2913 - Wer: 9.8997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0311 | 2.49 | 1000 | 0.1809 | 10.5498 | | 0.0074 | 4.98 | 2000 | 0.2470 | 10.2805 | | 0.0019 | 7.46 | 3000 | 0.3008 | 10.0297 | | 0.0011 | 9.95 | 4000 | 0.2913 | 9.8997 | | 0.0009 | 12.44 | 5000 | 0.3092 | 10.1876 | | 0.0005 | 14.93 | 6000 | 0.3495 | 10.1969 | | 0.0002 | 17.41 | 7000 | 0.3659 | 10.2526 | | 0.0001 | 19.9 | 8000 | 0.3846 | 10.2619 | | 0.0001 | 22.39 | 9000 | 0.3941 | 10.2897 | | 0.0001 | 24.88 | 10000 | 0.3990 | 10.3269 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2