--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer - whisper-large - mozilla-foundation/common_voice_11_0 - greek datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-lg-el-intlv-xs-2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 9.50037147102526 --- # whisper-lg-el-intlv-xs-2 This model is a fine-tuned version of [farsipal/whisper-lg-el-intlv-xs](https://huggingface.co./farsipal/whisper-lg-el-intlv-xs) on the mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr dataset. It achieves the following results on the evaluation set: - Loss: 0.2872 - Wer: 9.5004 ## Model description The model was trained on two interleaved datasets for transcription in the Greek language. ## Intended uses & limitations Transcription in the Greek language ## Training and evaluation data Training was performed on two interleaved datasets. Testing was performed on common voice 11.0 (el) test only. ## Training procedure ``` --model_name_or_path 'farsipal/whisper-lg-el-intlv-xs' \ --model_revision main \ --do_train True \ --do_eval True \ --use_auth_token False \ --freeze_feature_encoder False \ --freeze_encoder False \ --model_index_name 'whisper-lg-el-intlv-xs-2' \ --dataset_name 'mozilla-foundation/common_voice_11_0,google/fleurs' \ --dataset_config_name 'el,el_gr' \ --train_split_name 'train+validation,train+validation' \ --eval_split_name 'test,-' \ --text_column_name 'sentence,transcription' \ --audio_column_name 'audio,audio' \ --streaming False \ --max_duration_in_seconds 30 \ --do_lower_case False \ --do_remove_punctuation False \ --do_normalize_eval True \ --language greek \ --task transcribe \ --shuffle_buffer_size 500 \ --output_dir './data/finetuningRuns/whisper-lg-el-intlv-xs-2' \ --overwrite_output_dir True \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 4 \ --learning_rate 3.5e-6 \ --dropout 0.15 \ --attention_dropout 0.05 \ --warmup_steps 500 \ --max_steps 5000 \ --eval_steps 1000 \ --gradient_checkpointing True \ --cache_dir '~/.cache' \ --fp16 True \ --evaluation_strategy steps \ --per_device_eval_batch_size 8 \ --predict_with_generate True \ --generation_max_length 225 \ --save_steps 1000 \ --logging_steps 25 \ --report_to tensorboard \ --load_best_model_at_end True \ --metric_for_best_model wer \ --greater_is_better False \ --push_to_hub False \ --dataloader_num_workers 6 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0813 | 2.49 | 1000 | 0.2147 | 10.8284 | | 0.0379 | 4.98 | 2000 | 0.2439 | 10.0111 | | 0.0195 | 7.46 | 3000 | 0.2767 | 9.8811 | | 0.0126 | 9.95 | 4000 | 0.2872 | 9.5004 | | 0.0103 | 12.44 | 5000 | 0.3021 | 9.6954 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2