--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - mnist metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: mnist-digit-classification-2022-09-04 results: - task: type: image-classification name: Image Classification dataset: name: mnist type: mnist config: mnist split: train args: mnist metrics: - type: accuracy value: 0.9923333333333333 name: Accuracy --- # mnist-digit-classification-2022-09-04 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1