fangxq commited on
Commit
7784df4
·
verified ·
1 Parent(s): 3241ddf

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +574 -9
README.md CHANGED
@@ -1,14 +1,131 @@
1
  ---
2
- library_name: sentence-transformers
3
  model-index:
4
  - name: XYZ-embedding-zh-v2
5
  results:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - dataset:
7
  config: default
8
  name: MTEB CMedQAv1
9
  revision: None
10
  split: test
11
- type: C-MTEB/CMedQAv1
12
  metrics:
13
  - type: map
14
  value: 89.9766367822762
@@ -23,7 +140,7 @@ model-index:
23
  name: MTEB CMedQAv2
24
  revision: None
25
  split: test
26
- type: C-MTEB/CMedQAv2
27
  metrics:
28
  - type: map
29
  value: 89.04628340075982
@@ -104,6 +221,77 @@ model-index:
104
  value: 48.294
105
  task:
106
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  - dataset:
108
  config: default
109
  name: MTEB CovidRetrieval
@@ -317,6 +505,71 @@ model-index:
317
  value: 70.294
318
  task:
319
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
  - dataset:
321
  config: default
322
  name: MTEB MMarcoReranking
@@ -403,6 +656,44 @@ model-index:
403
  value: 82.505
404
  task:
405
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406
  - dataset:
407
  config: default
408
  name: MTEB MedicalRetrieval
@@ -474,6 +765,211 @@ model-index:
474
  value: 68.041
475
  task:
476
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  - dataset:
478
  config: default
479
  name: MTEB T2Reranking
@@ -482,11 +978,11 @@ model-index:
482
  type: C-MTEB/T2Reranking
483
  metrics:
484
  - type: map
485
- value: 69.13287570713865
486
  - type: mrr
487
- value: 79.95326487625066
488
  - type: main_score
489
- value: 69.13287570713865
490
  task:
491
  type: Reranking
492
  - dataset:
@@ -560,6 +1056,55 @@ model-index:
560
  value: 85.875
561
  task:
562
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563
  - dataset:
564
  config: default
565
  name: MTEB VideoRetrieval
@@ -631,12 +1176,32 @@ model-index:
631
  value: 80.93599999999999
632
  task:
633
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634
  tags:
635
  - mteb
636
- language:
637
- - zh
638
  ---
639
-
640
  <h2 align="left">XYZ-embedding-zh-v2</h2>
641
 
642
  ## Usage (Sentence Transformers)
 
1
  ---
 
2
  model-index:
3
  - name: XYZ-embedding-zh-v2
4
  results:
5
+ - dataset:
6
+ config: default
7
+ name: MTEB AFQMC
8
+ revision: None
9
+ split: validation
10
+ type: C-MTEB/AFQMC
11
+ metrics:
12
+ - type: cos_sim_pearson
13
+ value: 55.51799059309076
14
+ - type: cos_sim_spearman
15
+ value: 58.407433584137806
16
+ - type: manhattan_pearson
17
+ value: 57.17473672145622
18
+ - type: manhattan_spearman
19
+ value: 58.389018054159955
20
+ - type: euclidean_pearson
21
+ value: 57.19483956761451
22
+ - type: euclidean_spearman
23
+ value: 58.407433584137806
24
+ - type: main_score
25
+ value: 58.407433584137806
26
+ task:
27
+ type: STS
28
+ - dataset:
29
+ config: default
30
+ name: MTEB ATEC
31
+ revision: None
32
+ split: test
33
+ type: C-MTEB/ATEC
34
+ metrics:
35
+ - type: cos_sim_pearson
36
+ value: 57.31078155367183
37
+ - type: cos_sim_spearman
38
+ value: 57.59782762324478
39
+ - type: manhattan_pearson
40
+ value: 62.525487007985035
41
+ - type: manhattan_spearman
42
+ value: 57.591139966303615
43
+ - type: euclidean_pearson
44
+ value: 62.53702437760052
45
+ - type: euclidean_spearman
46
+ value: 57.597828749091384
47
+ - type: main_score
48
+ value: 57.59782762324478
49
+ task:
50
+ type: STS
51
+ - dataset:
52
+ config: zh
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ split: test
56
+ type: mteb/amazon_reviews_multi
57
+ metrics:
58
+ - type: accuracy
59
+ value: 49.374
60
+ - type: accuracy_stderr
61
+ value: 1.436636349254743
62
+ - type: f1
63
+ value: 47.115240601017774
64
+ - type: f1_stderr
65
+ value: 1.5642799356594534
66
+ - type: main_score
67
+ value: 49.374
68
+ task:
69
+ type: Classification
70
+ - dataset:
71
+ config: default
72
+ name: MTEB BQ
73
+ revision: None
74
+ split: test
75
+ type: C-MTEB/BQ
76
+ metrics:
77
+ - type: cos_sim_pearson
78
+ value: 71.49514309404829
79
+ - type: cos_sim_spearman
80
+ value: 72.66161713021279
81
+ - type: manhattan_pearson
82
+ value: 71.03443640254005
83
+ - type: manhattan_spearman
84
+ value: 72.63439621980275
85
+ - type: euclidean_pearson
86
+ value: 71.06830370642658
87
+ - type: euclidean_spearman
88
+ value: 72.66161713043078
89
+ - type: main_score
90
+ value: 72.66161713021279
91
+ task:
92
+ type: STS
93
+ - dataset:
94
+ config: default
95
+ name: MTEB CLSClusteringP2P
96
+ revision: None
97
+ split: test
98
+ type: C-MTEB/CLSClusteringP2P
99
+ metrics:
100
+ - type: v_measure
101
+ value: 57.237692641281
102
+ - type: v_measure_std
103
+ value: 1.2777768354339174
104
+ - type: main_score
105
+ value: 57.237692641281
106
+ task:
107
+ type: Clustering
108
+ - dataset:
109
+ config: default
110
+ name: MTEB CLSClusteringS2S
111
+ revision: None
112
+ split: test
113
+ type: C-MTEB/CLSClusteringS2S
114
+ metrics:
115
+ - type: v_measure
116
+ value: 48.41686666939331
117
+ - type: v_measure_std
118
+ value: 1.7663118461900793
119
+ - type: main_score
120
+ value: 48.41686666939331
121
+ task:
122
+ type: Clustering
123
  - dataset:
124
  config: default
125
  name: MTEB CMedQAv1
126
  revision: None
127
  split: test
128
+ type: C-MTEB/CMedQAv1-reranking
129
  metrics:
130
  - type: map
131
  value: 89.9766367822762
 
140
  name: MTEB CMedQAv2
141
  revision: None
142
  split: test
143
+ type: C-MTEB/CMedQAv2-reranking
144
  metrics:
145
  - type: map
146
  value: 89.04628340075982
 
221
  value: 48.294
222
  task:
223
  type: Retrieval
224
+ - dataset:
225
+ config: default
226
+ name: MTEB Cmnli
227
+ revision: None
228
+ split: validation
229
+ type: C-MTEB/CMNLI
230
+ metrics:
231
+ - type: cos_sim_accuracy
232
+ value: 82.8983764281419
233
+ - type: cos_sim_accuracy_threshold
234
+ value: 56.05731010437012
235
+ - type: cos_sim_ap
236
+ value: 90.23156362696572
237
+ - type: cos_sim_f1
238
+ value: 83.83207278307574
239
+ - type: cos_sim_f1_threshold
240
+ value: 52.05453634262085
241
+ - type: cos_sim_precision
242
+ value: 78.91044160132068
243
+ - type: cos_sim_recall
244
+ value: 89.40846387654898
245
+ - type: dot_accuracy
246
+ value: 82.8983764281419
247
+ - type: dot_accuracy_threshold
248
+ value: 56.05730414390564
249
+ - type: dot_ap
250
+ value: 90.20952356258861
251
+ - type: dot_f1
252
+ value: 83.83207278307574
253
+ - type: dot_f1_threshold
254
+ value: 52.054524421691895
255
+ - type: dot_precision
256
+ value: 78.91044160132068
257
+ - type: dot_recall
258
+ value: 89.40846387654898
259
+ - type: euclidean_accuracy
260
+ value: 82.8983764281419
261
+ - type: euclidean_accuracy_threshold
262
+ value: 93.74719858169556
263
+ - type: euclidean_ap
264
+ value: 90.23156283510565
265
+ - type: euclidean_f1
266
+ value: 83.83207278307574
267
+ - type: euclidean_f1_threshold
268
+ value: 97.92392253875732
269
+ - type: euclidean_precision
270
+ value: 78.91044160132068
271
+ - type: euclidean_recall
272
+ value: 89.40846387654898
273
+ - type: manhattan_accuracy
274
+ value: 82.85027059530968
275
+ - type: manhattan_accuracy_threshold
276
+ value: 3164.584159851074
277
+ - type: manhattan_ap
278
+ value: 90.23178004516869
279
+ - type: manhattan_f1
280
+ value: 83.82157123834887
281
+ - type: manhattan_f1_threshold
282
+ value: 3273.5992431640625
283
+ - type: manhattan_precision
284
+ value: 79.76768743400211
285
+ - type: manhattan_recall
286
+ value: 88.30956277764788
287
+ - type: max_accuracy
288
+ value: 82.8983764281419
289
+ - type: max_ap
290
+ value: 90.23178004516869
291
+ - type: max_f1
292
+ value: 83.83207278307574
293
+ task:
294
+ type: PairClassification
295
  - dataset:
296
  config: default
297
  name: MTEB CovidRetrieval
 
505
  value: 70.294
506
  task:
507
  type: Retrieval
508
+ - dataset:
509
+ config: default
510
+ name: MTEB IFlyTek
511
+ revision: None
512
+ split: validation
513
+ type: C-MTEB/IFlyTek-classification
514
+ metrics:
515
+ - type: accuracy
516
+ value: 52.743362831858406
517
+ - type: accuracy_stderr
518
+ value: 0.23768288128480788
519
+ - type: f1
520
+ value: 41.1548855278405
521
+ - type: f1_stderr
522
+ value: 0.4088759842813554
523
+ - type: main_score
524
+ value: 52.743362831858406
525
+ task:
526
+ type: Classification
527
+ - dataset:
528
+ config: default
529
+ name: MTEB JDReview
530
+ revision: None
531
+ split: test
532
+ type: C-MTEB/JDReview-classification
533
+ metrics:
534
+ - type: accuracy
535
+ value: 89.08067542213884
536
+ - type: accuracy_stderr
537
+ value: 0.9559278951487445
538
+ - type: ap
539
+ value: 60.875320104586564
540
+ - type: ap_stderr
541
+ value: 2.137806661565934
542
+ - type: f1
543
+ value: 84.39314192399665
544
+ - type: f1_stderr
545
+ value: 1.132407155321657
546
+ - type: main_score
547
+ value: 89.08067542213884
548
+ task:
549
+ type: Classification
550
+ - dataset:
551
+ config: default
552
+ name: MTEB LCQMC
553
+ revision: None
554
+ split: test
555
+ type: C-MTEB/LCQMC
556
+ metrics:
557
+ - type: cos_sim_pearson
558
+ value: 73.3633875566899
559
+ - type: cos_sim_spearman
560
+ value: 79.27679599527615
561
+ - type: manhattan_pearson
562
+ value: 79.12061667088273
563
+ - type: manhattan_spearman
564
+ value: 79.26989882781706
565
+ - type: euclidean_pearson
566
+ value: 79.12871362068391
567
+ - type: euclidean_spearman
568
+ value: 79.27679377557219
569
+ - type: main_score
570
+ value: 79.27679599527615
571
+ task:
572
+ type: STS
573
  - dataset:
574
  config: default
575
  name: MTEB MMarcoReranking
 
656
  value: 82.505
657
  task:
658
  type: Retrieval
659
+ - dataset:
660
+ config: zh-CN
661
+ name: MTEB MassiveIntentClassification (zh-CN)
662
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
663
+ split: test
664
+ type: mteb/amazon_massive_intent
665
+ metrics:
666
+ - type: accuracy
667
+ value: 77.9388029589778
668
+ - type: accuracy_stderr
669
+ value: 1.416192788478398
670
+ - type: f1
671
+ value: 74.77765701086211
672
+ - type: f1_stderr
673
+ value: 1.254859698486085
674
+ - type: main_score
675
+ value: 77.9388029589778
676
+ task:
677
+ type: Classification
678
+ - dataset:
679
+ config: zh-CN
680
+ name: MTEB MassiveScenarioClassification (zh-CN)
681
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
682
+ split: test
683
+ type: mteb/amazon_massive_scenario
684
+ metrics:
685
+ - type: accuracy
686
+ value: 83.8231338264963
687
+ - type: accuracy_stderr
688
+ value: 0.6973305760755886
689
+ - type: f1
690
+ value: 83.13105322628088
691
+ - type: f1_stderr
692
+ value: 0.600506118139685
693
+ - type: main_score
694
+ value: 83.8231338264963
695
+ task:
696
+ type: Classification
697
  - dataset:
698
  config: default
699
  name: MTEB MedicalRetrieval
 
765
  value: 68.041
766
  task:
767
  type: Retrieval
768
+ - dataset:
769
+ config: default
770
+ name: MTEB MultilingualSentiment
771
+ revision: None
772
+ split: validation
773
+ type: C-MTEB/MultilingualSentiment-classification
774
+ metrics:
775
+ - type: accuracy
776
+ value: 78.60333333333334
777
+ - type: accuracy_stderr
778
+ value: 0.3331499495555859
779
+ - type: f1
780
+ value: 78.4814340961856
781
+ - type: f1_stderr
782
+ value: 0.45721454672060496
783
+ - type: main_score
784
+ value: 78.60333333333334
785
+ task:
786
+ type: Classification
787
+ - dataset:
788
+ config: default
789
+ name: MTEB Ocnli
790
+ revision: None
791
+ split: validation
792
+ type: C-MTEB/OCNLI
793
+ metrics:
794
+ - type: cos_sim_accuracy
795
+ value: 80.5630752571738
796
+ - type: cos_sim_accuracy_threshold
797
+ value: 53.72971296310425
798
+ - type: cos_sim_ap
799
+ value: 85.61885910463258
800
+ - type: cos_sim_f1
801
+ value: 82.40469208211144
802
+ - type: cos_sim_f1_threshold
803
+ value: 50.07883310317993
804
+ - type: cos_sim_precision
805
+ value: 76.70609645131938
806
+ - type: cos_sim_recall
807
+ value: 89.01795142555439
808
+ - type: dot_accuracy
809
+ value: 80.5630752571738
810
+ - type: dot_accuracy_threshold
811
+ value: 53.7297248840332
812
+ - type: dot_ap
813
+ value: 85.61885910463258
814
+ - type: dot_f1
815
+ value: 82.40469208211144
816
+ - type: dot_f1_threshold
817
+ value: 50.07884502410889
818
+ - type: dot_precision
819
+ value: 76.70609645131938
820
+ - type: dot_recall
821
+ value: 89.01795142555439
822
+ - type: euclidean_accuracy
823
+ value: 80.5630752571738
824
+ - type: euclidean_accuracy_threshold
825
+ value: 96.19801044464111
826
+ - type: euclidean_ap
827
+ value: 85.61885910463258
828
+ - type: euclidean_f1
829
+ value: 82.40469208211144
830
+ - type: euclidean_f1_threshold
831
+ value: 99.92111921310425
832
+ - type: euclidean_precision
833
+ value: 76.70609645131938
834
+ - type: euclidean_recall
835
+ value: 89.01795142555439
836
+ - type: manhattan_accuracy
837
+ value: 80.67135896047645
838
+ - type: manhattan_accuracy_threshold
839
+ value: 3323.1739044189453
840
+ - type: manhattan_ap
841
+ value: 85.55348220886658
842
+ - type: manhattan_f1
843
+ value: 82.26744186046511
844
+ - type: manhattan_f1_threshold
845
+ value: 3389.273452758789
846
+ - type: manhattan_precision
847
+ value: 76.00716204118174
848
+ - type: manhattan_recall
849
+ value: 89.65153115100317
850
+ - type: max_accuracy
851
+ value: 80.67135896047645
852
+ - type: max_ap
853
+ value: 85.61885910463258
854
+ - type: max_f1
855
+ value: 82.40469208211144
856
+ task:
857
+ type: PairClassification
858
+ - dataset:
859
+ config: default
860
+ name: MTEB OnlineShopping
861
+ revision: None
862
+ split: test
863
+ type: C-MTEB/OnlineShopping-classification
864
+ metrics:
865
+ - type: accuracy
866
+ value: 94.94
867
+ - type: accuracy_stderr
868
+ value: 0.49030602688525093
869
+ - type: ap
870
+ value: 93.0785841977823
871
+ - type: ap_stderr
872
+ value: 0.5447383082750599
873
+ - type: f1
874
+ value: 94.92765777406245
875
+ - type: f1_stderr
876
+ value: 0.4891510966106189
877
+ - type: main_score
878
+ value: 94.94
879
+ task:
880
+ type: Classification
881
+ - dataset:
882
+ config: default
883
+ name: MTEB PAWSX
884
+ revision: None
885
+ split: test
886
+ type: C-MTEB/PAWSX
887
+ metrics:
888
+ - type: cos_sim_pearson
889
+ value: 36.564307811370654
890
+ - type: cos_sim_spearman
891
+ value: 42.44208208349051
892
+ - type: manhattan_pearson
893
+ value: 42.099358471578306
894
+ - type: manhattan_spearman
895
+ value: 42.50283181486304
896
+ - type: euclidean_pearson
897
+ value: 42.07954956675317
898
+ - type: euclidean_spearman
899
+ value: 42.453014115018554
900
+ - type: main_score
901
+ value: 42.44208208349051
902
+ task:
903
+ type: STS
904
+ - dataset:
905
+ config: default
906
+ name: MTEB QBQTC
907
+ revision: None
908
+ split: test
909
+ type: C-MTEB/QBQTC
910
+ metrics:
911
+ - type: cos_sim_pearson
912
+ value: 39.19092968089104
913
+ - type: cos_sim_spearman
914
+ value: 41.5174661348832
915
+ - type: manhattan_pearson
916
+ value: 37.91587646684523
917
+ - type: manhattan_spearman
918
+ value: 41.536668677987194
919
+ - type: euclidean_pearson
920
+ value: 37.91079973901135
921
+ - type: euclidean_spearman
922
+ value: 41.51833855501128
923
+ - type: main_score
924
+ value: 41.5174661348832
925
+ task:
926
+ type: STS
927
+ - dataset:
928
+ config: zh
929
+ name: MTEB STS22 (zh)
930
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
931
+ split: test
932
+ type: mteb/sts22-crosslingual-sts
933
+ metrics:
934
+ - type: cos_sim_pearson
935
+ value: 62.029449510721605
936
+ - type: cos_sim_spearman
937
+ value: 66.31935471251364
938
+ - type: manhattan_pearson
939
+ value: 63.63179975157496
940
+ - type: manhattan_spearman
941
+ value: 66.3007950466125
942
+ - type: euclidean_pearson
943
+ value: 63.59752734041086
944
+ - type: euclidean_spearman
945
+ value: 66.31935471251364
946
+ - type: main_score
947
+ value: 66.31935471251364
948
+ task:
949
+ type: STS
950
+ - dataset:
951
+ config: default
952
+ name: MTEB STSB
953
+ revision: None
954
+ split: test
955
+ type: C-MTEB/STSB
956
+ metrics:
957
+ - type: cos_sim_pearson
958
+ value: 81.81459862563769
959
+ - type: cos_sim_spearman
960
+ value: 82.15323953301453
961
+ - type: manhattan_pearson
962
+ value: 81.61904305126016
963
+ - type: manhattan_spearman
964
+ value: 82.1361073852468
965
+ - type: euclidean_pearson
966
+ value: 81.60799063723992
967
+ - type: euclidean_spearman
968
+ value: 82.15405405083231
969
+ - type: main_score
970
+ value: 82.15323953301453
971
+ task:
972
+ type: STS
973
  - dataset:
974
  config: default
975
  name: MTEB T2Reranking
 
978
  type: C-MTEB/T2Reranking
979
  metrics:
980
  - type: map
981
+ value: 69.13560834260383
982
  - type: mrr
983
+ value: 79.95749642669074
984
  - type: main_score
985
+ value: 69.13560834260383
986
  task:
987
  type: Reranking
988
  - dataset:
 
1056
  value: 85.875
1057
  task:
1058
  type: Retrieval
1059
+ - dataset:
1060
+ config: default
1061
+ name: MTEB TNews
1062
+ revision: None
1063
+ split: validation
1064
+ type: C-MTEB/TNews-classification
1065
+ metrics:
1066
+ - type: accuracy
1067
+ value: 54.309000000000005
1068
+ - type: accuracy_stderr
1069
+ value: 0.4694347665011627
1070
+ - type: f1
1071
+ value: 52.598803987889255
1072
+ - type: f1_stderr
1073
+ value: 0.5191189533227434
1074
+ - type: main_score
1075
+ value: 54.309000000000005
1076
+ task:
1077
+ type: Classification
1078
+ - dataset:
1079
+ config: default
1080
+ name: MTEB ThuNewsClusteringP2P
1081
+ revision: None
1082
+ split: test
1083
+ type: C-MTEB/ThuNewsClusteringP2P
1084
+ metrics:
1085
+ - type: v_measure
1086
+ value: 76.64191229011249
1087
+ - type: v_measure_std
1088
+ value: 2.807206940615986
1089
+ - type: main_score
1090
+ value: 76.64191229011249
1091
+ task:
1092
+ type: Clustering
1093
+ - dataset:
1094
+ config: default
1095
+ name: MTEB ThuNewsClusteringS2S
1096
+ revision: None
1097
+ split: test
1098
+ type: C-MTEB/ThuNewsClusteringS2S
1099
+ metrics:
1100
+ - type: v_measure
1101
+ value: 71.02529199411326
1102
+ - type: v_measure_std
1103
+ value: 2.0547855888165945
1104
+ - type: main_score
1105
+ value: 71.02529199411326
1106
+ task:
1107
+ type: Clustering
1108
  - dataset:
1109
  config: default
1110
  name: MTEB VideoRetrieval
 
1176
  value: 80.93599999999999
1177
  task:
1178
  type: Retrieval
1179
+ - dataset:
1180
+ config: default
1181
+ name: MTEB Waimai
1182
+ revision: None
1183
+ split: test
1184
+ type: C-MTEB/waimai-classification
1185
+ metrics:
1186
+ - type: accuracy
1187
+ value: 89.47
1188
+ - type: accuracy_stderr
1189
+ value: 0.26476404589747476
1190
+ - type: ap
1191
+ value: 75.49555223825388
1192
+ - type: ap_stderr
1193
+ value: 0.596040511982105
1194
+ - type: f1
1195
+ value: 88.01797939221065
1196
+ - type: f1_stderr
1197
+ value: 0.27168216797281214
1198
+ - type: main_score
1199
+ value: 89.47
1200
+ task:
1201
+ type: Classification
1202
  tags:
1203
  - mteb
 
 
1204
  ---
 
1205
  <h2 align="left">XYZ-embedding-zh-v2</h2>
1206
 
1207
  ## Usage (Sentence Transformers)