fangxq commited on
Commit
1ea3722
·
verified ·
1 Parent(s): d19ec25

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +669 -0
README.md ADDED
@@ -0,0 +1,669 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: XYZ-embedding-zh-v2
4
+ results:
5
+ - dataset:
6
+ config: default
7
+ name: MTEB CMedQAv1
8
+ revision: None
9
+ split: test
10
+ type: C-MTEB/CMedQAv1
11
+ metrics:
12
+ - type: map
13
+ value: 89.9766367822762
14
+ - type: mrr
15
+ value: 91.88896825396824
16
+ - type: main_score
17
+ value: 89.9766367822762
18
+ task:
19
+ type: Reranking
20
+ - dataset:
21
+ config: default
22
+ name: MTEB CMedQAv2
23
+ revision: None
24
+ split: test
25
+ type: C-MTEB/CMedQAv2
26
+ metrics:
27
+ - type: map
28
+ value: 89.04628340075982
29
+ - type: mrr
30
+ value: 91.21702380952381
31
+ - type: main_score
32
+ value: 89.04628340075982
33
+ task:
34
+ type: Reranking
35
+ - dataset:
36
+ config: default
37
+ name: MTEB CmedqaRetrieval
38
+ revision: None
39
+ split: dev
40
+ type: C-MTEB/CmedqaRetrieval
41
+ metrics:
42
+ - type: map_at_1
43
+ value: 27.796
44
+ - type: map_at_10
45
+ value: 41.498000000000005
46
+ - type: map_at_100
47
+ value: 43.332
48
+ - type: map_at_1000
49
+ value: 43.429
50
+ - type: map_at_3
51
+ value: 37.172
52
+ - type: map_at_5
53
+ value: 39.617000000000004
54
+ - type: mrr_at_1
55
+ value: 42.111
56
+ - type: mrr_at_10
57
+ value: 50.726000000000006
58
+ - type: mrr_at_100
59
+ value: 51.632
60
+ - type: mrr_at_1000
61
+ value: 51.67
62
+ - type: mrr_at_3
63
+ value: 48.429
64
+ - type: mrr_at_5
65
+ value: 49.662
66
+ - type: ndcg_at_1
67
+ value: 42.111
68
+ - type: ndcg_at_10
69
+ value: 48.294
70
+ - type: ndcg_at_100
71
+ value: 55.135999999999996
72
+ - type: ndcg_at_1000
73
+ value: 56.818000000000005
74
+ - type: ndcg_at_3
75
+ value: 43.185
76
+ - type: ndcg_at_5
77
+ value: 45.266
78
+ - type: precision_at_1
79
+ value: 42.111
80
+ - type: precision_at_10
81
+ value: 10.635
82
+ - type: precision_at_100
83
+ value: 1.619
84
+ - type: precision_at_1000
85
+ value: 0.183
86
+ - type: precision_at_3
87
+ value: 24.539
88
+ - type: precision_at_5
89
+ value: 17.644000000000002
90
+ - type: recall_at_1
91
+ value: 27.796
92
+ - type: recall_at_10
93
+ value: 59.034
94
+ - type: recall_at_100
95
+ value: 86.991
96
+ - type: recall_at_1000
97
+ value: 98.304
98
+ - type: recall_at_3
99
+ value: 43.356
100
+ - type: recall_at_5
101
+ value: 49.998
102
+ - type: main_score
103
+ value: 48.294
104
+ task:
105
+ type: Retrieval
106
+ - dataset:
107
+ config: default
108
+ name: MTEB CovidRetrieval
109
+ revision: None
110
+ split: dev
111
+ type: C-MTEB/CovidRetrieval
112
+ metrics:
113
+ - type: map_at_1
114
+ value: 80.479
115
+ - type: map_at_10
116
+ value: 87.984
117
+ - type: map_at_100
118
+ value: 88.036
119
+ - type: map_at_1000
120
+ value: 88.03699999999999
121
+ - type: map_at_3
122
+ value: 87.083
123
+ - type: map_at_5
124
+ value: 87.694
125
+ - type: mrr_at_1
126
+ value: 80.927
127
+ - type: mrr_at_10
128
+ value: 88.046
129
+ - type: mrr_at_100
130
+ value: 88.099
131
+ - type: mrr_at_1000
132
+ value: 88.1
133
+ - type: mrr_at_3
134
+ value: 87.215
135
+ - type: mrr_at_5
136
+ value: 87.768
137
+ - type: ndcg_at_1
138
+ value: 80.927
139
+ - type: ndcg_at_10
140
+ value: 90.756
141
+ - type: ndcg_at_100
142
+ value: 90.96
143
+ - type: ndcg_at_1000
144
+ value: 90.975
145
+ - type: ndcg_at_3
146
+ value: 89.032
147
+ - type: ndcg_at_5
148
+ value: 90.106
149
+ - type: precision_at_1
150
+ value: 80.927
151
+ - type: precision_at_10
152
+ value: 10.011000000000001
153
+ - type: precision_at_100
154
+ value: 1.009
155
+ - type: precision_at_1000
156
+ value: 0.101
157
+ - type: precision_at_3
158
+ value: 31.752999999999997
159
+ - type: precision_at_5
160
+ value: 19.6
161
+ - type: recall_at_1
162
+ value: 80.479
163
+ - type: recall_at_10
164
+ value: 99.05199999999999
165
+ - type: recall_at_100
166
+ value: 99.895
167
+ - type: recall_at_1000
168
+ value: 100.0
169
+ - type: recall_at_3
170
+ value: 94.494
171
+ - type: recall_at_5
172
+ value: 97.102
173
+ - type: main_score
174
+ value: 90.756
175
+ task:
176
+ type: Retrieval
177
+ - dataset:
178
+ config: default
179
+ name: MTEB DuRetrieval
180
+ revision: None
181
+ split: dev
182
+ type: C-MTEB/DuRetrieval
183
+ metrics:
184
+ - type: map_at_1
185
+ value: 27.853
186
+ - type: map_at_10
187
+ value: 85.13199999999999
188
+ - type: map_at_100
189
+ value: 87.688
190
+ - type: map_at_1000
191
+ value: 87.712
192
+ - type: map_at_3
193
+ value: 59.705
194
+ - type: map_at_5
195
+ value: 75.139
196
+ - type: mrr_at_1
197
+ value: 93.65
198
+ - type: mrr_at_10
199
+ value: 95.682
200
+ - type: mrr_at_100
201
+ value: 95.722
202
+ - type: mrr_at_1000
203
+ value: 95.724
204
+ - type: mrr_at_3
205
+ value: 95.467
206
+ - type: mrr_at_5
207
+ value: 95.612
208
+ - type: ndcg_at_1
209
+ value: 93.65
210
+ - type: ndcg_at_10
211
+ value: 91.155
212
+ - type: ndcg_at_100
213
+ value: 93.183
214
+ - type: ndcg_at_1000
215
+ value: 93.38499999999999
216
+ - type: ndcg_at_3
217
+ value: 90.648
218
+ - type: ndcg_at_5
219
+ value: 89.47699999999999
220
+ - type: precision_at_1
221
+ value: 93.65
222
+ - type: precision_at_10
223
+ value: 43.11
224
+ - type: precision_at_100
225
+ value: 4.854
226
+ - type: precision_at_1000
227
+ value: 0.49100000000000005
228
+ - type: precision_at_3
229
+ value: 81.11699999999999
230
+ - type: precision_at_5
231
+ value: 68.28999999999999
232
+ - type: recall_at_1
233
+ value: 27.853
234
+ - type: recall_at_10
235
+ value: 91.678
236
+ - type: recall_at_100
237
+ value: 98.553
238
+ - type: recall_at_1000
239
+ value: 99.553
240
+ - type: recall_at_3
241
+ value: 61.381
242
+ - type: recall_at_5
243
+ value: 78.605
244
+ - type: main_score
245
+ value: 91.155
246
+ task:
247
+ type: Retrieval
248
+ - dataset:
249
+ config: default
250
+ name: MTEB EcomRetrieval
251
+ revision: None
252
+ split: dev
253
+ type: C-MTEB/EcomRetrieval
254
+ metrics:
255
+ - type: map_at_1
256
+ value: 54.50000000000001
257
+ - type: map_at_10
258
+ value: 65.167
259
+ - type: map_at_100
260
+ value: 65.664
261
+ - type: map_at_1000
262
+ value: 65.67399999999999
263
+ - type: map_at_3
264
+ value: 62.633
265
+ - type: map_at_5
266
+ value: 64.208
267
+ - type: mrr_at_1
268
+ value: 54.50000000000001
269
+ - type: mrr_at_10
270
+ value: 65.167
271
+ - type: mrr_at_100
272
+ value: 65.664
273
+ - type: mrr_at_1000
274
+ value: 65.67399999999999
275
+ - type: mrr_at_3
276
+ value: 62.633
277
+ - type: mrr_at_5
278
+ value: 64.208
279
+ - type: ndcg_at_1
280
+ value: 54.50000000000001
281
+ - type: ndcg_at_10
282
+ value: 70.294
283
+ - type: ndcg_at_100
284
+ value: 72.564
285
+ - type: ndcg_at_1000
286
+ value: 72.841
287
+ - type: ndcg_at_3
288
+ value: 65.128
289
+ - type: ndcg_at_5
290
+ value: 67.96799999999999
291
+ - type: precision_at_1
292
+ value: 54.50000000000001
293
+ - type: precision_at_10
294
+ value: 8.64
295
+ - type: precision_at_100
296
+ value: 0.967
297
+ - type: precision_at_1000
298
+ value: 0.099
299
+ - type: precision_at_3
300
+ value: 24.099999999999998
301
+ - type: precision_at_5
302
+ value: 15.840000000000002
303
+ - type: recall_at_1
304
+ value: 54.50000000000001
305
+ - type: recall_at_10
306
+ value: 86.4
307
+ - type: recall_at_100
308
+ value: 96.7
309
+ - type: recall_at_1000
310
+ value: 98.9
311
+ - type: recall_at_3
312
+ value: 72.3
313
+ - type: recall_at_5
314
+ value: 79.2
315
+ - type: main_score
316
+ value: 70.294
317
+ task:
318
+ type: Retrieval
319
+ - dataset:
320
+ config: default
321
+ name: MTEB MMarcoReranking
322
+ revision: None
323
+ split: dev
324
+ type: C-MTEB/Mmarco-reranking
325
+ metrics:
326
+ - type: map
327
+ value: 37.68251937316638
328
+ - type: mrr
329
+ value: 36.61746031746032
330
+ - type: main_score
331
+ value: 37.68251937316638
332
+ task:
333
+ type: Reranking
334
+ - dataset:
335
+ config: default
336
+ name: MTEB MMarcoRetrieval
337
+ revision: None
338
+ split: dev
339
+ type: C-MTEB/MMarcoRetrieval
340
+ metrics:
341
+ - type: map_at_1
342
+ value: 69.401
343
+ - type: map_at_10
344
+ value: 78.8
345
+ - type: map_at_100
346
+ value: 79.077
347
+ - type: map_at_1000
348
+ value: 79.081
349
+ - type: map_at_3
350
+ value: 76.97
351
+ - type: map_at_5
352
+ value: 78.185
353
+ - type: mrr_at_1
354
+ value: 71.719
355
+ - type: mrr_at_10
356
+ value: 79.327
357
+ - type: mrr_at_100
358
+ value: 79.56400000000001
359
+ - type: mrr_at_1000
360
+ value: 79.56800000000001
361
+ - type: mrr_at_3
362
+ value: 77.736
363
+ - type: mrr_at_5
364
+ value: 78.782
365
+ - type: ndcg_at_1
366
+ value: 71.719
367
+ - type: ndcg_at_10
368
+ value: 82.505
369
+ - type: ndcg_at_100
370
+ value: 83.673
371
+ - type: ndcg_at_1000
372
+ value: 83.786
373
+ - type: ndcg_at_3
374
+ value: 79.07600000000001
375
+ - type: ndcg_at_5
376
+ value: 81.122
377
+ - type: precision_at_1
378
+ value: 71.719
379
+ - type: precision_at_10
380
+ value: 9.924
381
+ - type: precision_at_100
382
+ value: 1.049
383
+ - type: precision_at_1000
384
+ value: 0.106
385
+ - type: precision_at_3
386
+ value: 29.742
387
+ - type: precision_at_5
388
+ value: 18.937
389
+ - type: recall_at_1
390
+ value: 69.401
391
+ - type: recall_at_10
392
+ value: 93.349
393
+ - type: recall_at_100
394
+ value: 98.492
395
+ - type: recall_at_1000
396
+ value: 99.384
397
+ - type: recall_at_3
398
+ value: 84.385
399
+ - type: recall_at_5
400
+ value: 89.237
401
+ - type: main_score
402
+ value: 82.505
403
+ task:
404
+ type: Retrieval
405
+ - dataset:
406
+ config: default
407
+ name: MTEB MedicalRetrieval
408
+ revision: None
409
+ split: dev
410
+ type: C-MTEB/MedicalRetrieval
411
+ metrics:
412
+ - type: map_at_1
413
+ value: 57.8
414
+ - type: map_at_10
415
+ value: 64.696
416
+ - type: map_at_100
417
+ value: 65.294
418
+ - type: map_at_1000
419
+ value: 65.328
420
+ - type: map_at_3
421
+ value: 62.949999999999996
422
+ - type: map_at_5
423
+ value: 64.095
424
+ - type: mrr_at_1
425
+ value: 58.099999999999994
426
+ - type: mrr_at_10
427
+ value: 64.85
428
+ - type: mrr_at_100
429
+ value: 65.448
430
+ - type: mrr_at_1000
431
+ value: 65.482
432
+ - type: mrr_at_3
433
+ value: 63.1
434
+ - type: mrr_at_5
435
+ value: 64.23
436
+ - type: ndcg_at_1
437
+ value: 57.8
438
+ - type: ndcg_at_10
439
+ value: 68.041
440
+ - type: ndcg_at_100
441
+ value: 71.074
442
+ - type: ndcg_at_1000
443
+ value: 71.919
444
+ - type: ndcg_at_3
445
+ value: 64.584
446
+ - type: ndcg_at_5
447
+ value: 66.625
448
+ - type: precision_at_1
449
+ value: 57.8
450
+ - type: precision_at_10
451
+ value: 7.85
452
+ - type: precision_at_100
453
+ value: 0.9289999999999999
454
+ - type: precision_at_1000
455
+ value: 0.099
456
+ - type: precision_at_3
457
+ value: 23.1
458
+ - type: precision_at_5
459
+ value: 14.84
460
+ - type: recall_at_1
461
+ value: 57.8
462
+ - type: recall_at_10
463
+ value: 78.5
464
+ - type: recall_at_100
465
+ value: 92.9
466
+ - type: recall_at_1000
467
+ value: 99.4
468
+ - type: recall_at_3
469
+ value: 69.3
470
+ - type: recall_at_5
471
+ value: 74.2
472
+ - type: main_score
473
+ value: 68.041
474
+ task:
475
+ type: Retrieval
476
+ - dataset:
477
+ config: default
478
+ name: MTEB T2Reranking
479
+ revision: None
480
+ split: dev
481
+ type: C-MTEB/T2Reranking
482
+ metrics:
483
+ - type: map
484
+ value: 69.13287570713865
485
+ - type: mrr
486
+ value: 79.95326487625066
487
+ - type: main_score
488
+ value: 69.13287570713865
489
+ task:
490
+ type: Reranking
491
+ - dataset:
492
+ config: default
493
+ name: MTEB T2Retrieval
494
+ revision: None
495
+ split: dev
496
+ type: C-MTEB/T2Retrieval
497
+ metrics:
498
+ - type: map_at_1
499
+ value: 28.041
500
+ - type: map_at_10
501
+ value: 78.509
502
+ - type: map_at_100
503
+ value: 82.083
504
+ - type: map_at_1000
505
+ value: 82.143
506
+ - type: map_at_3
507
+ value: 55.345
508
+ - type: map_at_5
509
+ value: 67.899
510
+ - type: mrr_at_1
511
+ value: 90.86
512
+ - type: mrr_at_10
513
+ value: 93.31
514
+ - type: mrr_at_100
515
+ value: 93.388
516
+ - type: mrr_at_1000
517
+ value: 93.391
518
+ - type: mrr_at_3
519
+ value: 92.92200000000001
520
+ - type: mrr_at_5
521
+ value: 93.167
522
+ - type: ndcg_at_1
523
+ value: 90.86
524
+ - type: ndcg_at_10
525
+ value: 85.875
526
+ - type: ndcg_at_100
527
+ value: 89.269
528
+ - type: ndcg_at_1000
529
+ value: 89.827
530
+ - type: ndcg_at_3
531
+ value: 87.254
532
+ - type: ndcg_at_5
533
+ value: 85.855
534
+ - type: precision_at_1
535
+ value: 90.86
536
+ - type: precision_at_10
537
+ value: 42.488
538
+ - type: precision_at_100
539
+ value: 5.029
540
+ - type: precision_at_1000
541
+ value: 0.516
542
+ - type: precision_at_3
543
+ value: 76.172
544
+ - type: precision_at_5
545
+ value: 63.759
546
+ - type: recall_at_1
547
+ value: 28.041
548
+ - type: recall_at_10
549
+ value: 84.829
550
+ - type: recall_at_100
551
+ value: 95.89999999999999
552
+ - type: recall_at_1000
553
+ value: 98.665
554
+ - type: recall_at_3
555
+ value: 57.009
556
+ - type: recall_at_5
557
+ value: 71.188
558
+ - type: main_score
559
+ value: 85.875
560
+ task:
561
+ type: Retrieval
562
+ - dataset:
563
+ config: default
564
+ name: MTEB VideoRetrieval
565
+ revision: None
566
+ split: dev
567
+ type: C-MTEB/VideoRetrieval
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 67.30000000000001
571
+ - type: map_at_10
572
+ value: 76.819
573
+ - type: map_at_100
574
+ value: 77.141
575
+ - type: map_at_1000
576
+ value: 77.142
577
+ - type: map_at_3
578
+ value: 75.233
579
+ - type: map_at_5
580
+ value: 76.163
581
+ - type: mrr_at_1
582
+ value: 67.30000000000001
583
+ - type: mrr_at_10
584
+ value: 76.819
585
+ - type: mrr_at_100
586
+ value: 77.141
587
+ - type: mrr_at_1000
588
+ value: 77.142
589
+ - type: mrr_at_3
590
+ value: 75.233
591
+ - type: mrr_at_5
592
+ value: 76.163
593
+ - type: ndcg_at_1
594
+ value: 67.30000000000001
595
+ - type: ndcg_at_10
596
+ value: 80.93599999999999
597
+ - type: ndcg_at_100
598
+ value: 82.311
599
+ - type: ndcg_at_1000
600
+ value: 82.349
601
+ - type: ndcg_at_3
602
+ value: 77.724
603
+ - type: ndcg_at_5
604
+ value: 79.406
605
+ - type: precision_at_1
606
+ value: 67.30000000000001
607
+ - type: precision_at_10
608
+ value: 9.36
609
+ - type: precision_at_100
610
+ value: 0.996
611
+ - type: precision_at_1000
612
+ value: 0.1
613
+ - type: precision_at_3
614
+ value: 28.299999999999997
615
+ - type: precision_at_5
616
+ value: 17.8
617
+ - type: recall_at_1
618
+ value: 67.30000000000001
619
+ - type: recall_at_10
620
+ value: 93.60000000000001
621
+ - type: recall_at_100
622
+ value: 99.6
623
+ - type: recall_at_1000
624
+ value: 99.9
625
+ - type: recall_at_3
626
+ value: 84.89999999999999
627
+ - type: recall_at_5
628
+ value: 89.0
629
+ - type: main_score
630
+ value: 80.93599999999999
631
+ task:
632
+ type: Retrieval
633
+ tags:
634
+ - mteb
635
+ language:
636
+ - zh
637
+
638
+ ---
639
+
640
+ <h2 align="left">XYZ-embedding-zh-v2</h2>
641
+
642
+ ## Usage (Sentence Transformers)
643
+
644
+ First install the Sentence Transformers library:
645
+
646
+ ```bash
647
+ pip install -U sentence-transformers
648
+ ```
649
+ Then you can load this model and run inference.
650
+ ```python
651
+ from sentence_transformers import SentenceTransformer
652
+
653
+ # Download from the 🤗 Hub
654
+ model = SentenceTransformer("fangxq/XYZ-embedding-zh-v2")
655
+ # Run inference
656
+ sentences = [
657
+ 'The weather is lovely today.',
658
+ "It's so sunny outside!",
659
+ 'He drove to the stadium.',
660
+ ]
661
+ embeddings = model.encode(sentences)
662
+ print(embeddings.shape)
663
+ # [3, 1792]
664
+
665
+ # Get the similarity scores for the embeddings
666
+ similarities = model.similarity(embeddings, embeddings)
667
+ print(similarities.shape)
668
+ # [3, 3]
669
+ ```