File size: 6,281 Bytes
e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 e2ac310 dbc89e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
library_name: transformers
tags:
- headline-generation
- tags-generation
- multilingual
license: cc-by-sa-4.0
datasets:
- faisaltareque/XL-HeadTags
pipeline_tag: text2text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This is a Text-to-Text model for generating headlines and tags from news articles.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model is a Text-to-Text model for generating headlines and tags from news articles. This is a Flan-T5 model finetuned on the **XL-HeadTags** multilingual dataset [(read more)](https://aclanthology.org/2024.findings-acl.771/).
<!-- - **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed] -->
<!-- - **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed] -->
- **Model type:** T5
- **Finetuned from model :** [Flan-T5](https://huggingface.co./google/flan-t5-large)
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [XL-HeadTags](https://github.com/faisaltareque/XL-HeadTags)
- **Paper:** [XL-HeadTags](https://aclanthology.org/2024.findings-acl.771/)
<!-- - **Demo [optional]:** [More Information Needed] -->
<!-- ## Uses -->
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
<!-- ### Direct Use -->
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!--
[More Information Needed]
### Downstream Use [optional] -->
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- [More Information Needed]
### Out-of-Scope Use -->
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- [More Information Needed]
## Bias, Risks, and Limitations -->
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
<!-- [More Information Needed] -->
<!-- ### Recommendations -->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data -->
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
<!-- [More Information Needed]
### Training Procedure -->
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
<!-- #### Preprocessing [optional]
[More Information Needed] -->
<!-- #### Training Hyperparameters
- **Training regime:** [More Information Needed] fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
<!-- #### Speeds, Sizes, Times [optional] -->
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
<!-- [More Information Needed]
## Evaluation -->
<!-- This section describes the evaluation protocols and provides the results. -->
<!-- ### Testing Data, Factors & Metrics
#### Testing Data -->
<!-- This should link to a Dataset Card if possible. -->
<!-- [More Information Needed]
#### Factors -->
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
<!-- [More Information Needed]
#### Metrics -->
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
<!-- [More Information Needed]
### Results -->
<!-- [More Information Needed]
#### Summary -->
<!-- ## Model Examination [optional] -->
<!-- Relevant interpretability work for the model goes here -->
<!-- [More Information Needed]
## Environmental Impact -->
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed] -->
## Citation [optional]
```
@inproceedings{shohan-etal-2024-xl,
title = "{XL}-{H}ead{T}ags: Leveraging Multimodal Retrieval Augmentation for the Multilingual Generation of News Headlines and Tags",
author = "Shohan, Faisal and
Nayeem, Mir Tafseer and
Islam, Samsul and
Akash, Abu Ubaida and
Joty, Shafiq",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.771",
pages = "12991--13024"
}
```
## Model Card Authors [optional]
- Faisal Tareque Shohan ([email protected])
- Mir Tafseer Nayeem ([email protected])
- Samsul Islam ([email protected])
- Abu Ubaida Akash ([email protected])
- Shafiq Joty ([email protected])
## Model Card Contact
[Faisal Tareque Shohan](mailto:[email protected]) |