|
import os |
|
import requests |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def download_model_if_not_exists(url, model_path): |
|
"""Download model from Hugging Face repository if it doesn't exist locally.""" |
|
if not os.path.exists(model_path): |
|
print("Model not found locally, downloading from Hugging Face...") |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
with open(model_path, 'wb') as f: |
|
f.write(response.content) |
|
print(f"Model downloaded and saved to {model_path}") |
|
else: |
|
print("Failed to download model. Please check the URL.") |
|
else: |
|
print("Model already exists locally.") |
|
|
|
def load_model(model_path): |
|
"""Load model from the given path.""" |
|
model = torch.load(model_path, map_location=torch.device('cpu')) |
|
model.eval() |
|
model.to(device) |
|
return model |
|
|
|
def preprocess_image(image_path): |
|
transform = T.Compose([ |
|
T.Resize((224, 224)), |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
image = Image.open(image_path).convert("RGB") |
|
return transform(image).unsqueeze(0) |
|
|
|
def get_probabilities(logits): |
|
"""Apply softmax to get probabilities.""" |
|
probabilities = F.softmax(logits, dim=1) |
|
percentages = probabilities * 100 |
|
return percentages |
|
|
|
def predict(image_path, model, class_names): |
|
"""Make prediction using the trained model.""" |
|
image_tensor = preprocess_image(image_path).to(device) |
|
model.eval() |
|
with torch.inference_mode(): |
|
outputs = model(image_tensor) |
|
percentages = get_probabilities(outputs) |
|
_, predicted_class = torch.max(outputs, 1) |
|
predicted_label = class_names[predicted_class.item()] |
|
return predicted_label, percentages |
|
|
|
|
|
class_names = ['Heart', 'Oblong', 'Oval', 'Round', 'Square'] |
|
|
|
|
|
model_path = r"model_85_nn_.pth" |
|
model_url = "https://huggingface.co./fahd9999/model_85_nn_/resolve/main/model_85_nn_.pth?download=true" |
|
|
|
|
|
download_model_if_not_exists(model_url, model_path) |
|
|
|
|
|
model = load_model(model_path) |
|
|
|
def main(image_path): |
|
"""Run the prediction process.""" |
|
predicted_label, percentages = predict(image_path, model, class_names) |
|
result = {class_names[i]: percentages[0, i].item() for i in range(len(class_names))} |
|
sorted_result = dict(sorted(result.items(), key=lambda item: item[1], reverse=True)) |
|
print(sorted_result) |
|
|
|
|
|
if __name__ == "__main__": |
|
image_path = "path_to_your_image.jpg" |
|
main(image_path) |
|
|