--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # [Reproducing] Stanford Alpaca: An Instruction-following LLaMA Model This is the repo for reproducing [Stanford Alpaca : An Instruction-following LLaMA Model](https://github.com/tatsu-lab/stanford_alpaca/blob/main/README.md). We finetune some of LlaMa2-based large language model using medical QA dataset. The repo contains: - The [5K data](#dataset) conversations between patients and physicians used for fine-tuning the model. - The code for [Preparation data](#data-preparation). - The code for [Fine Tuning the Model](#fine-tuning). - The link for [Testing the Model](#testing-the-model). ## Dataset We using the 5k generated dataset by [Chat Doctor](https://github.com/Kent0n-Li/ChatDoctor). The dataset is a generated conversations between patients and physicians from ChatGPT GenMedGPT-5k and disease database. Dataset also currated and modified to Indonesian Language Based. [`GenMedGPT-5k-id.json`](https://github.com/gilangcy/stanford-alpaca/blob/main/GenMedGPT-5k-id.json) contains 5K instruction-following data we used for fine-tuning the LlaMa model. This JSON file is a list of dictionaries, each dictionary contains the following fields: - `instruction`: `str`, describes the task the model should perform. Each of the 52K instructions is unique. - `input`: `str`, optional context or input for the task. For example, when the instruction is "Summarize the following article", the input is the article. Around 40% of the examples have an input. - `output`: `str`, the answer to the instruction as generated by `text-davinci-003`. If you're interested in fine-tuning with your own data, it's essential to adhere to the default prompt format that the model used during its pre-training phase. The prompt for LlaMa 2 is structured similarly to this: ``` [INST] <> {{ instruction }} <> {{ input }} [/INST] {{ output }} ``` Meanwhile, the prompt for PolyLM and InternLM (adapted to Indonesian) is structured similarly to this: ``` Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat. Instruksi: {instruction} Masukan: {input} Tanggapan: {output} ``` ## Finetuning the Model We fine-tune our models based on the step from Stanford Alpaca. We choose to train some LLama-based model. The model that we finetune are PolyLM-1.7B, LlaMa-2-7B, InternLM-7B with the following hyperparameters: | Hyperparameter | PolyLM-1.7B | LLaMA-7B | InternLM-7B | |----------------|------------ |----------|-------------| | Batch size | 128 | 128 | 128 | | Learning rate | 3e-4 | 3e-4 | 3e-4 | | Epochs | 3 | 3 | 3 | | Max length | 256 | 256 | 256 | | Weight decay | 0 | 0 | 0 | To reproduce our fine-tuning runs for LLaMA, first install the requirements ``` pip install -r requirements.txt ``` The code for finetuning is available at [`fine-tuning.ipynb`](https://github.com/gilangcy/stanford-alpaca/blob/main/fine-tuning.ipynb) with four sections of pre-preocessing data, fine-tuning with LlaMa 2, fine-tuning with PolyLM, and fine-tuning with InternLM. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0 ## Testing the Model These are link for test the fine-tuned model : 1. [PolyLM-1.7B](https://huggingface.co./spaces/dennyaw/polylm1.7b) 2. [LlaMa-2-7B](https://huggingface.co./spaces/dennyaw/Llama-2-7b-finetuned) 3. [InternLM-7B](https://huggingface.co./spaces/dennyaw/internlm-7b-finetuned) ### Authors All interns below contributed equally and the order is determined by random draw. - [Denny Andriana Wahyu](https://www.linkedin.com/in/denny-aw/) - [Fadli Aulawi Al Ghiffari](https://www.linkedin.com/in/fadli-aulawi-al-ghiffari-9b4990148/) - [Gilang Catur Yudishtira](https://www.linkedin.com/in/gilangcy/) All advised by [Firqa Aqilla Noor Arasyi](https://www.linkedin.com/in/firqaana/)