patrickvonplaten
commited on
Commit
·
0b362f5
1
Parent(s):
544b258
upload all files
Browse files- README.md +96 -0
- config.json +51 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Wav2Vec2 Acoustic Model fine-tuned on LibriSpeech
|
2 |
+
|
3 |
+
Original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
|
4 |
+
|
5 |
+
Paper: https://arxiv.org/abs/2006.11477
|
6 |
+
|
7 |
+
## Usage
|
8 |
+
|
9 |
+
Make sure you are working on [this branch](https://github.com/huggingface/transformers/tree/add_wav2vec) (which will be merged to master soon hopefully) of transformers:
|
10 |
+
|
11 |
+
```bash
|
12 |
+
$ git checkout add_wav2vec
|
13 |
+
```
|
14 |
+
|
15 |
+
In the following, we'll show a simple example of how the model can be used for automatic speech recognition.
|
16 |
+
|
17 |
+
First, let's load the model
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoModelForMaskedLM
|
21 |
+
|
22 |
+
model = AutoModelForMaskedLM.from_pretrained("patrickvonplaten/wav2vec2-base-960h")
|
23 |
+
|
24 |
+
```
|
25 |
+
|
26 |
+
Next, let's load a dummy librispeech dataset
|
27 |
+
|
28 |
+
```python
|
29 |
+
from datasets import load_dataset
|
30 |
+
import soundfile as sf
|
31 |
+
|
32 |
+
libri_speech_dummy = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
33 |
+
|
34 |
+
def map_to_array(batch):
|
35 |
+
speech_array, _ = sf.read(batch["file"])
|
36 |
+
batch["speech"] = speech_array
|
37 |
+
return batch
|
38 |
+
|
39 |
+
libri_speech_dummy = libri_speech_dummy.map(map_to_array, remove_columns=["file"])
|
40 |
+
|
41 |
+
# check out dataset
|
42 |
+
print(libri_speech_dummy)
|
43 |
+
|
44 |
+
input_speech_16kHz = libri_speech_dummy[2]["speech"]
|
45 |
+
expected_trans = libri_speech_dummy[2]["text"]
|
46 |
+
```
|
47 |
+
|
48 |
+
Cool, now we can run an inference pass to retrieve the logits:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import torch
|
52 |
+
logits = model(torch.tensor(input_speech_16kHz)[None, :])
|
53 |
+
|
54 |
+
# use highest probability logits
|
55 |
+
pred_ids = torch.argmax(logits[0], axis=-1)
|
56 |
+
```
|
57 |
+
|
58 |
+
Finally, let's decode the prediction.
|
59 |
+
Let's create a simple CTC-Decoder:
|
60 |
+
|
61 |
+
```python
|
62 |
+
import numpy as np
|
63 |
+
from itertools import groupby
|
64 |
+
|
65 |
+
class Decoder:
|
66 |
+
def __init__(self, json_dict):
|
67 |
+
self.dict = json_dict
|
68 |
+
self.look_up = np.asarray(list(self.dict.keys()))
|
69 |
+
|
70 |
+
def decode(self, ids):
|
71 |
+
converted_tokens = self.look_up[ids]
|
72 |
+
fused_tokens = [tok[0] for tok in groupby(converted_tokens)]
|
73 |
+
output = ' '.join(''.join(''.join(fused_tokens).split("<s>")).split("|"))
|
74 |
+
return output
|
75 |
+
```
|
76 |
+
|
77 |
+
and instantiate with the corresponding dict.
|
78 |
+
|
79 |
+
```python
|
80 |
+
# hard-coded json dict taken from: https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
|
81 |
+
json_dict = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
|
82 |
+
|
83 |
+
decoder = Decoder(json_dict=json_dict)
|
84 |
+
```
|
85 |
+
|
86 |
+
and decode the result
|
87 |
+
|
88 |
+
```python
|
89 |
+
pred_trans = decoder.decode(pred_ids)
|
90 |
+
|
91 |
+
print("Prediction:\n", pred_trans)
|
92 |
+
print("\n" + 50 * "=" + "\n")
|
93 |
+
print("Correct result:\n", expected_trans)
|
94 |
+
```
|
95 |
+
|
96 |
+
🎉
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Wav2Vec2ForMaskedLM"
|
4 |
+
],
|
5 |
+
"conv_bias": false,
|
6 |
+
"conv_dim": [
|
7 |
+
512,
|
8 |
+
512,
|
9 |
+
512,
|
10 |
+
512,
|
11 |
+
512,
|
12 |
+
512,
|
13 |
+
512
|
14 |
+
],
|
15 |
+
"conv_kernel": [
|
16 |
+
10,
|
17 |
+
3,
|
18 |
+
3,
|
19 |
+
3,
|
20 |
+
3,
|
21 |
+
2,
|
22 |
+
2
|
23 |
+
],
|
24 |
+
"conv_stride": [
|
25 |
+
5,
|
26 |
+
2,
|
27 |
+
2,
|
28 |
+
2,
|
29 |
+
2,
|
30 |
+
2,
|
31 |
+
2
|
32 |
+
],
|
33 |
+
"do_stable_layer_norm": false,
|
34 |
+
"feat_extract_activation": "gelu",
|
35 |
+
"feat_extract_dropout": 0.0,
|
36 |
+
"feat_extract_norm": "group",
|
37 |
+
"hidden_act": "gelu",
|
38 |
+
"hidden_dropout_prob": 0.1,
|
39 |
+
"hidden_size": 768,
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"intermediate_size": 3072,
|
42 |
+
"layer_norm_eps": 1e-05,
|
43 |
+
"model_type": "wav2vec2",
|
44 |
+
"num_attention_heads": 12,
|
45 |
+
"num_conv_pos_embedding_groups": 16,
|
46 |
+
"num_conv_pos_embeddings": 128,
|
47 |
+
"num_feat_extract_layers": 7,
|
48 |
+
"num_hidden_layers": 12,
|
49 |
+
"transformers_version": "4.3.0.dev0",
|
50 |
+
"vocab_size": 32
|
51 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c34f9827b034a1b9141dbf6f652f8a60eda61cdf5771c9e05bfa99033c92cd96
|
3 |
+
size 377667514
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
|