File size: 8,826 Bytes
00f719c d885125 00f719c 76a834a 502d6e7 57d469e 7d02173 502d6e7 76a834a 502d6e7 76a834a d885125 502d6e7 76a834a 502d6e7 4e5c41b 502d6e7 76a834a d885125 502d6e7 b6d5b80 76a834a 05da548 502d6e7 05da548 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a 502d6e7 76a834a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
inference: false
tags:
- SeamlessM4T
license: cc-by-nc-4.0
library_name: fairseq2
---
# SeamlessM4T Large
SeamlessM4T is a collection of models designed to provide high quality translation, allowing people from different
linguistic communities to communicate effortlessly through speech and text.
SeamlessM4T covers:
- 📥 101 languages for speech input
- ⌨️ 96 Languages for text input/output
- 🗣️ 35 languages for speech output.
-------------------
**🌟 SeamlessM4T v2, an improved version of this version with a novel architecture, has been released [here](https://huggingface.co./facebook/seamless-m4t-v2-large).
This new model improves over SeamlessM4T v1 in quality as well as inference speed in speech generation tasks.**
**SeamlessM4T v2 is also supported by 🤗 Transformers, more on it [in the model card of this new version](https://huggingface.co./facebook/seamless-m4t-v2-large#transformers-usage) or directly in [🤗 Transformers docs](https://huggingface.co./docs/transformers/main/en/model_doc/seamless_m4t_v2).**
-------------------
This is the "large" variant of the unified model, which enables multiple tasks without relying on multiple separate models:
- Speech-to-speech translation (S2ST)
- Speech-to-text translation (S2TT)
- Text-to-speech translation (T2ST)
- Text-to-text translation (T2TT)
- Automatic speech recognition (ASR)
## SeamlessM4T models
| Model Name | #params | checkpoint | metrics |
| ------------------ | ------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| SeamlessM4T-Large | 2.3B | [🤗 Model card](https://huggingface.co./facebook/seamless-m4t-large) - [checkpoint](https://huggingface.co./facebook/seamless-m4t-large/resolve/main/multitask_unity_large.pt) | [metrics](https://dl.fbaipublicfiles.com/seamlessM4T/metrics/seamlessM4T_large.zip) |
| SeamlessM4T-Medium | 1.2B | [🤗 Model card](https://huggingface.co./facebook/seamless-m4t-medium) - [checkpoint](https://huggingface.co./facebook/seamless-m4t-medium/resolve/main/multitask_unity_medium.pt) | [metrics](https://dl.fbaipublicfiles.com/seamlessM4T/metrics/seamlessM4T_medium.zip) |
We provide extensive evaluation results of SeamlessM4T-Medium and SeamlessM4T-Large in the SeamlessM4T paper (as averages) in the `metrics` files above.
## 🤗 Transformers Usage
First, load the processor and a checkpoint of the model:
```python
>>> from transformers import AutoProcessor, SeamlessM4TModel
>>> processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-large")
>>> model = SeamlessM4TModel.from_pretrained("facebook/hf-seamless-m4t-large")
```
You can seamlessly use this model on text or on audio, to generated either translated text or translated audio.
Here is how to use the processor to process text and audio:
```python
>>> # let's load an audio sample from an Arabic speech corpus
>>> from datasets import load_dataset
>>> dataset = load_dataset("arabic_speech_corpus", split="test", streaming=True)
>>> audio_sample = next(iter(dataset))["audio"]
>>> # now, process it
>>> audio_inputs = processor(audios=audio_sample["array"], return_tensors="pt")
>>> # now, process some English test as well
>>> text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")
```
### Speech
[`SeamlessM4TModel`](https://huggingface.co./docs/transformers/main/en/model_doc/seamless_m4t#transformers.SeamlessM4TModel) can *seamlessly* generate text or speech with few or no changes. Let's target Russian voice translation:
```python
>>> audio_array_from_text = model.generate(**text_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()
>>> audio_array_from_audio = model.generate(**audio_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()
```
With basically the same code, I've translated English text and Arabic speech to Russian speech samples.
### Text
Similarly, you can generate translated text from audio files or from text with the same model. You only have to pass `generate_speech=False` to [`SeamlessM4TModel.generate`](https://huggingface.co./docs/transformers/main/en/model_doc/seamless_m4t#transformers.SeamlessM4TModel.generate).
This time, let's translate to French.
```python
>>> # from audio
>>> output_tokens = model.generate(**audio_inputs, tgt_lang="fra", generate_speech=False)
>>> translated_text_from_audio = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
>>> # from text
>>> output_tokens = model.generate(**text_inputs, tgt_lang="fra", generate_speech=False)
>>> translated_text_from_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
```
## Instructions to run inference with SeamlessM4T models
The SeamlessM4T models are currently available through the `seamless_communication` package. The `seamless_communication`
package can be installed by following the instructions outlined here: [Installation](https://github.com/facebookresearch/seamless_communication/tree/main#installation).
Once installed, a [`Translator`](https://github.com/facebookresearch/seamless_communication/blob/main/src/seamless_communication/models/inference/translator.py#L50)
object can be instantiated to perform all five of the spoken langauge tasks. The `Translator` is instantiated with three arguments:
1. **model_name_or_card**: SeamlessM4T checkpoint. Can be either `seamlessM4T_medium` for the medium model, or `seamlessM4T_large` for the large model
2. **vocoder_name_or_card**: vocoder checkpoint (`vocoder_36langs`)
3. **device**: Torch device
```python
import torch
from seamless_communication.models.inference import Translator
# Initialize a Translator object with a multitask model, vocoder on the GPU.
translator = Translator("seamlessM4T_large", vocoder_name_or_card="vocoder_36langs", device=torch.device("cuda:0"))
```
Once instantiated, the `predict()` method can be used to run inference as many times on any of the supported tasks.
Given an input audio with `<path_to_input_audio>` or an input text `<input_text>` in `<src_lang>`, we can translate
into `<tgt_lang>` as follows.
### S2ST and T2ST:
```python
# S2ST
translated_text, wav, sr = translator.predict(<path_to_input_audio>, "s2st", <tgt_lang>)
# T2ST
translated_text, wav, sr = translator.predict(<input_text>, "t2st", <tgt_lang>, src_lang=<src_lang>)
```
Note that `<src_lang>` must be specified for T2ST.
The generated units are synthesized and the output audio file is saved with:
```python
wav, sr = translator.synthesize_speech(<speech_units>, <tgt_lang>)
# Save the translated audio generation.
torchaudio.save(
<path_to_save_audio>,
wav[0].cpu(),
sample_rate=sr,
)
```
### S2TT, T2TT and ASR:
```python
# S2TT
translated_text, _, _ = translator.predict(<path_to_input_audio>, "s2tt", <tgt_lang>)
# ASR
# This is equivalent to S2TT with `<tgt_lang>=<src_lang>`.
transcribed_text, _, _ = translator.predict(<path_to_input_audio>, "asr", <src_lang>)
# T2TT
translated_text, _, _ = translator.predict(<input_text>, "t2tt", <tgt_lang>, src_lang=<src_lang>)
```
Note that `<src_lang>` must be specified for T2TT.
## Citation
If you plan to use SeamlessM4T in your work or any models/datasets/artifacts published in SeamlessM4T, please cite:
```bibtex
@article{seamlessm4t2023,
title={"SeamlessM4T—Massively Multilingual \& Multimodal Machine Translation"},
author={{Seamless Communication}, Lo\"{i}c Barrault, Yu-An Chung, Mariano Cora Meglioli, David Dale, Ning Dong, Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Pengwei Li, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen Chen, Naji El Hachem, Brian Ellis, Gabriel Mejia Gonzalez, Justin Haaheim, Prangthip Hansanti, Russ Howes, Bernie Huang, Min-Jae Hwang, Hirofumi Inaguma, Somya Jain, Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Janice Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov, Benjamin Peloquin, Mohamed Ramadan, Abinesh Ramakrishnan, Anna Sun, Kevin Tran, Tuan Tran, Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin Yang, Bokai Yu, Pierre Andrews, Can Balioglu, Marta R. Costa-juss\`{a} \footnotemark[3], Onur \,{C}elebi,Maha Elbayad,Cynthia Gao, Francisco Guzm\'an, Justine Kao, Ann Lee, Alexandre Mourachko, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang},
journal={ArXiv},
year={2023}
}
```
## License
The Seamless Communication code and weights are CC-BY-NC 4.0 licensed.
|