CoTracker
CoTracker
vision
lvoursl commited on
Commit
b748ec5
·
verified ·
1 Parent(s): 840d860

Updated README.md

Browse files

- added tags
- added description, examples and citation info

Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - CoTracker
5
+ - vision
6
+ - cotracker
7
+ ---
8
+ # Point tracking with CoTracker3
9
+
10
+
11
+
12
+ **CoTracker3** is a fast transformer-based model that was introduced in [CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos](https://arxiv.org/abs/2410.11831).
13
+ It can track any point in a video and brings to tracking some of the benefits of Optical Flow.
14
+ You could read more about the paper on our [webpage](https://cotracker3.github.io/). Code is available [here](https://github.com/facebookresearch/co-tracker).
15
+
16
+ CoTracker can track:
17
+
18
+ - **Any pixel** in a video
19
+ - A **quasi-dense** set of pixels together
20
+ - Points can be manually selected or sampled on a grid in any video frame
21
+
22
+
23
+
24
+ ## How to use
25
+ Here is how to use this model in the **offline mode**:
26
+
27
+ ```pip install imageio[ffmpeg]```, then:
28
+ ```python
29
+ import torch
30
+ # Download the video
31
+ url = 'https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/apple.mp4'
32
+
33
+ import imageio.v3 as iio
34
+ frames = iio.imread(url, plugin="FFMPEG") # plugin="pyav"
35
+
36
+ device = 'cuda'
37
+ grid_size = 10
38
+ video = torch.tensor(frames).permute(0, 3, 1, 2)[None].float().to(device) # B T C H W
39
+
40
+ # Run Offline CoTracker:
41
+ cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to(device)
42
+ pred_tracks, pred_visibility = cotracker(video, grid_size=grid_size) # B T N 2, B T N 1
43
+ ```
44
+ and in the **online mode**:
45
+ ```python
46
+ cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online").to(device)
47
+
48
+ # Run Online CoTracker, the same model with a different API:
49
+ # Initialize online processing
50
+ cotracker(video_chunk=video, is_first_step=True, grid_size=grid_size)
51
+
52
+ # Process the video
53
+ for ind in range(0, video.shape[1] - cotracker.step, cotracker.step):
54
+ pred_tracks, pred_visibility = cotracker(
55
+ video_chunk=video[:, ind : ind + cotracker.step * 2]
56
+ ) # B T N 2, B T N 1
57
+ ```
58
+ Online processing is more memory-efficient and allows for the processing of longer videos or videos in real-time.
59
+
60
+ ## BibTeX entry and citation info
61
+
62
+ ```bibtex
63
+ @inproceedings{karaev24cotracker3,
64
+ title = {CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos},
65
+ author = {Nikita Karaev and Iurii Makarov and Jianyuan Wang and Natalia Neverova and Andrea Vedaldi and Christian Rupprecht},
66
+ booktitle = {Proc. {arXiv:2410.11831}},
67
+ year = {2024}
68
+ }
69
+ ```