--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - endpoints-template inference: true --- # Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co./CompVis/stable-diffusion-v1-4) > Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. > For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co./blog/stable_diffusion). For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co./CompVis/stable-diffusion-v1-4). ### License (CreativeML OpenRAIL-M) The full license can be found here: https://huggingface.co./spaces/CompVis/stable-diffusion-license --- This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co./philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py). There is also a [notebook](https://huggingface.co./philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### expected Request payload ```json { "inputs": "A prompt used for image generation" } ``` below is an example on how to run a request using Python and `requests`. ## Run Request ```python import json from typing import List import requests as r import base64 from PIL import Image from io import BytesIO ENDPOINT_URL = "" HF_TOKEN = "" # helper decoder def decode_base64_image(image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) return Image.open(buffer) def predict(prompt:str=None): payload = {"inputs": code_snippet,"parameters": parameters} response = r.post( ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt} ) resp = response.json() return decode_base64_image(resp["image"]) prediction = predict( prompt="the first animal on the mars" ) ``` expected output ![sample](sample.jpg)