Delete handler.py
Browse files- handler.py +0 -42
handler.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
import torch
|
3 |
-
from torch import autocast
|
4 |
-
from diffusers import StableDiffusionPipeline
|
5 |
-
import base64
|
6 |
-
from io import BytesIO
|
7 |
-
|
8 |
-
|
9 |
-
# set device
|
10 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
-
|
12 |
-
if device.type != 'cuda':
|
13 |
-
raise ValueError("need to run on GPU")
|
14 |
-
|
15 |
-
class EndpointHandler():
|
16 |
-
def __init__(self, path=""):
|
17 |
-
# load the optimized model
|
18 |
-
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
19 |
-
self.pipe = self.pipe.to(device)
|
20 |
-
|
21 |
-
|
22 |
-
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
23 |
-
"""
|
24 |
-
Args:
|
25 |
-
data (:obj:):
|
26 |
-
includes the input data and the parameters for the inference.
|
27 |
-
Return:
|
28 |
-
A :obj:`dict`:. base64 encoded image
|
29 |
-
"""
|
30 |
-
inputs = data.pop("inputs", data)
|
31 |
-
|
32 |
-
# run inference pipeline
|
33 |
-
with autocast(device.type):
|
34 |
-
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
35 |
-
|
36 |
-
# encode image as base 64
|
37 |
-
buffered = BytesIO()
|
38 |
-
image.save(buffered, format="JPEG")
|
39 |
-
img_str = base64.b64encode(buffered.getvalue())
|
40 |
-
|
41 |
-
# postprocess the prediction
|
42 |
-
return {"image": img_str.decode()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|