--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_healthsea results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.0 - name: NER Recall type: recall value: 0.0 - name: NER F Score type: f_score value: 0.0 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 1.0 - name: SENTER Recall type: recall value: 1.0 - name: SENTER F Score type: f_score value: 1.0 --- Healthsea pipeline for analyzing reviews to supplement products | Feature | Description | | --- | --- | | **Name** | `en_healthsea` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.0,<3.3.0` | | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Explosion](explosion.ai) | ### Label Scheme
View label scheme (6 labels for 2 components) | Component | Labels | | --- | --- | | **`ner`** | `BENEFIT`, `CONDITION` | | **`clausecat`** | `POSITIVE`, `NEUTRAL`, `NEGATIVE`, `ANAMNESIS` |
### Accuracy | Type | Score | | --- | --- | | `SENTS_F` | 100.00 | | `SENTS_P` | 100.00 | | `SENTS_R` | 100.00 | | `ENTS_F` | 0.00 | | `ENTS_P` | 0.00 | | `ENTS_R` | 0.00 | | `ENTS_PER_TYPE` | 0.00 | | `CATS_SCORE` | 74.87 | | `CATS_MICRO_P` | 82.39 | | `CATS_MICRO_R` | 80.93 | | `CATS_MICRO_F` | 81.66 | | `CATS_MACRO_P` | 78.43 | | `CATS_MACRO_R` | 72.16 | | `CATS_MACRO_F` | 74.87 | | `CATS_MACRO_AUC` | 92.78 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `CLAUSECAT_LOSS` | 339.11 |