--- library_name: transformers base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-finetuned-ner results: [] --- # rubert-finetuned-ner This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co./DeepPavlov/rubert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1555 - Precision: 0.8890 - Recall: 0.9087 - F1: 0.8988 - Accuracy: 0.9590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0665 | 0.5 | 625 | 0.2322 | 0.8077 | 0.8335 | 0.8204 | 0.9336 | | 0.1781 | 1.0 | 1250 | 0.1786 | 0.8379 | 0.8815 | 0.8592 | 0.9483 | | 0.1083 | 1.5 | 1875 | 0.1828 | 0.8845 | 0.9043 | 0.8943 | 0.9568 | | 0.0609 | 2.0 | 2500 | 0.1555 | 0.8890 | 0.9087 | 0.8988 | 0.9590 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3