File size: 30,018 Bytes
e4cb14c f8ce9a7 3349fa6 f8ce9a7 3349fa6 f8ce9a7 3349fa6 e4cb14c 88b6b00 9916679 ae5214a 9916679 97c190a 9916679 88b6b00 02d7d08 88b6b00 9916679 88b6b00 9916679 88b6b00 9916679 88b6b00 9916679 88b6b00 9916679 88b6b00 9916679 4a16b87 88b6b00 3da752d 88b6b00 4a16b87 9916679 4a16b87 9916679 88b6b00 9916679 4a16b87 9916679 88b6b00 9916679 88b6b00 5265a3b 88b6b00 ea9549d 88b6b00 9916679 85e88e4 9916679 954a00f 9916679 aa5793b 9916679 3658ad2 85e88e4 561b47e 9916679 88b6b00 9916679 b35f874 9916679 88b6b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
---
license: mit
datasets:
- mozilla-foundation/common_voice_17_0
- espnet/yodas
- facebook/multilingual_librispeech
language:
- fr
metrics:
- wer
pipeline_tag: automatic-speech-recognition
tags:
- asr
- whisper
model-index:
- name: distil-large-v3-fr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0, short-form (<= 30sec)
type: mozilla-foundation/common_voice_17_0
config: fr
split: test
args:
language: fr
metrics:
- name: WER
type: wer
value: 12.675
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech, short-form (<= 30sec)
type: facebook/multilingual_librispeech
config: french
split: test
args:
language: fr
metrics:
- name: WER
type: wer
value: 5.865
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: VoxPopuli, short-form (<= 30sec)
type: facebook/voxpopuli
config: fr
split: test
args:
language: fr
metrics:
- name: WER
type: wer
value: 10.832
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Fleurs, short-form (<= 30sec)
type: google/fleurs
config: fr_fr
split: test
args:
language: fr
metrics:
- name: WER
type: wer
value: 7.989
---
# Distil-Whisper: distil-large-v3-fr
Distil-Whisper for English Automatic Speech Recognition (ASR) was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
This is the knowledge distilled version of OpenAI's [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3) for French ASR.
The result is a distilled model that performs within **2% WER of [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3)** on out-of-distribution evaluation sets for both short-form and long form transcription. Moreover, it is **5.9x** faster than [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3) and **1.3** times faster than the tiniest version of whisper while being incomparably more accurate.
| Model | Params (M) | Rel. Latency | Short-Form WER | Long-Form WER |
| :--------------------- | :--------: | :----------: | :------------: | :-----------: |
| whisper-tiny | 37.8 | 4.7 | 43.7 | 28.2 |
| whisper-base | 72.6 | 3.7 | 30.6 | 18.7 |
| whisper-small | 242 | 2.3 | 16.2 | 12.6 |
| whisper-medium | 764 | 1.3 | 11.7 | 11.0 |
| whisper-large-v3 | 1540 | 1.0 | 7.8 | 9.0 |
| **distil-large-v3-fr** | **756** | **5.9** | **9.3** | **11.1** |
*latencies benchmarked to generate 128 tokens on A100 40GB with a batch size of 1. More details about inference performances in [inference speed](#inference-speed) section.
*WERs are averaged on the test sets. More details in [short-form](#short-form) and [long-form](#long-form) results sections.
## Table of Contents
1. [Transformers Usage](#transformers-usage)
* [Short-Form Transcription](#short-form-transcription)
* [Sequential Long-Form](#sequential-long-form)
* [Chunked Long-Form](#chunked-long-form)
* [Speculative Decoding](#speculative-decoding)
* [Additional Speed and Memory Improvements](#additional-speed--memory-improvements)
2. [Library Integrations](#library-integrations)
* [Whisper cpp](#whispercpp)
* [Transformers.js](#transformersjs)
3. [Model Details](#model-details)
* [Architecture](#architecture)
* [Training](#training)
4. [Results](#results)
* [Evaluation methodology](#evaluation-methodology)
* [Short-Form](#short-form)
* [Long-Form](#long-form)
* [Inference Speed](#inference-speed)
4. [License](#license)
## Transformers Usage
distil-large-v3-fr is supported in the Hugging Face 🤗 Transformers library from version 4.41 onwards. To run the model, first
install the latest version of Transformers. For this example, we'll also install 🤗 Datasets to load a toy audio dataset
from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade transformers accelerate datasets[audio]
```
### Short-Form Transcription
The model can be used with the [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe short-form audio files (< 30-seconds) as follows:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "eustlb/distil-large-v3-fr"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
sample = next(iter(dataset))["audio"]
result = pipe(sample)
print(result["text"])
```
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```diff
- result = pipe(sample)
+ result = pipe("audio.mp3")
```
For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
```python
result = pipe(sample, return_timestamps=True)
print(result["chunks"])
```
<details>
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co./docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
for more details.
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from datasets import Audio, load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "eustlb/distil-large-v3-fr"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
sample = next(iter(dataset))["audio"]
input_features = processor(
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
).input_features
input_features = input_features.to(device, dtype=torch_dtype)
gen_kwargs = {
"max_new_tokens": 128,
"num_beams": 1,
"return_timestamps": False,
}
pred_ids = model.generate(input_features, **gen_kwargs)
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])
print(pred_text)
```
</details>
### Sequential Long-Form
distil-large-v3 is compatible with OpenAI's sequential
long-form transcription algorithm. This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
The sequential long-form algorithm should be used in either of the following scenarios:
1. Transcription accuracy is the most important factor, and latency is less of a consideration
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf).
The [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class can be used to transcribe long audio files with the sequential algorithm as follows:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "eustlb/distil-large-v3-fr"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
sample = next(iter(dataset))["audio"]
result = pipe(sample)
print(result["text"])
```
<details>
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from datasets import Audio, load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "eustlb/distil-large-v3-fr"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
sample = next(iter(dataset))["audio"]
inputs = processor(
sample["array"],
sampling_rate=sample["sampling_rate"],
return_tensors="pt",
truncation=False,
padding="longest",
return_attention_mask=True,
)
inputs = inputs.to(device, dtype=torch_dtype)
gen_kwargs = {
"max_new_tokens": 448,
"num_beams": 1,
"condition_on_prev_tokens": False,
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
"logprob_threshold": -1.0,
"no_speech_threshold": 0.6,
"return_timestamps": True,
}
pred_ids = model.generate(**inputs, **gen_kwargs)
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
print(pred_text)
```
</details>
### Chunked Long-Form
distil-large-v3-fr remains compatible with the Transformers chunked long-form algorithm. This algorithm should be used when
a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3-fr, a chunk length of 25-seconds
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "eustlb/distil-large-v3-fr"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=25,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
sample = next(iter(dataset))["audio"]
result = pipe(sample)
print(result["text"])
```
### Speculative Decoding
distil-large-v3 is the first Distil-Whisper model that can be used as an assistant to Whisper large-v3 for [speculative decoding](https://huggingface.co./blog/whisper-speculative-decoding).
Speculative decoding mathematically ensures that exactly the same outputs as Whisper are obtained, while being 2 times faster.
This makes it the perfect drop-in replacement for existing Whisper pipelines, since the same outputs are guaranteed.
In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
specify it as the "assistant model" for generation:
```python
from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor
import torch
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
assistant_model_id = "eustlb/distil-large-v3-fr"
assistant_model = AutoModelForCausalLM.from_pretrained(
assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
assistant_model.to(device)
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
generate_kwargs={"assistant_model": assistant_model},
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
sample = next(iter(dataset))["audio"]
result = pipe(sample)
print(result["text"])
```
For more details on speculative decoding, refer to the blog post [Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co./blog/whisper-speculative-decoding).
### Additional Speed & Memory Improvements
You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
more efficient flash attention version.
#### Flash Attention 2
We recommend using [Flash-Attention 2](https://huggingface.co./docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
```
pip install flash-attn --no-build-isolation
```
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
```
#### Torch Scale-Product-Attention (SDPA)
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
whether you have a compatible PyTorch version, run the following Python code snippet:
```python
from transformers.utils import is_torch_sdpa_available
print(is_torch_sdpa_available())
```
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
`attn_implementation="sdpa"` as follows:
```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
```
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co./docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
#### Torch compile
Coming soon...
#### 4-bit and 8-bit Inference
Coming soon...
## Library Integrations
### Whisper.cpp
distil-large-v3-fr can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster
than Whisper large-v3, while performing to within 0.8% WER over long-form audio.
Steps for getting started:
1. Clone the Whisper.cpp repository:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
```
2. Install the Hugging Face Hub Python package:
```bash
pip install --upgrade huggingface_hub
```
And download the GGML weights for distil-large-v3 using the following Python snippet:
```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id='eustlb/distil-large-v3-fr-ggml', filename='ggml-distil-large-v3-fr.bin', local_dir='./models')
```
Note that if you do not have a Python environment set-up, you can also download the weights directly with `wget`:
```bash
wget https://huggingface.co./eustlb/distil-large-v3-fr-ggml/resolve/main/ggml-distil-large-v3-fr.bin -P ./models
````
3. Run inference
```bash
wget https://huggingface.co./spaces/eustlb/whisper-vs-distil-whisper-fr/resolve/main/assets/example_1.wav
make -j && ./main -m models/ggml-distil-large-v3-fr.bin -f example_1.wav
```
### Transformers.js
Distil-Whisper can be run completely in your web browser with [Transformers.js](http://github.com/xenova/transformers.js):
1. Install Transformers.js from [NPM](https://www.npmjs.com/package/@xenova/transformers):
```bash
npm i @xenova/transformers
```
2. Import the library and perform inference with the pipeline API.
```js
import { pipeline } from '@xenova/transformers';
const transcriber = await pipeline('automatic-speech-recognition', 'eustlb/distil-large-v3-fr');
const url = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await transcriber(url);
// { text: " And so, my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." }
```
Refer to the Transformers.js [docs](https://huggingface.co./docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline)
for further information.
## Model Details
### Architecture
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of total inference time. Thus, to optimise for latency, the focus is on minimising the inference time of the decoder.
To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed. The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training. The student's decoder structure is copied from [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3), with the only difference being a reduction from 32 to 2 decoder layers. These layers are initialized from distil-large-v3 to leverage language transfer from English to French (more details [here](https://github.com/huggingface/distil-whisper/tree/main/training#22-language-transfer)).
### Training
#### Data
distil-large-v3-fr is trained on 4,515 hours of audio data from three open-source, permissively licensed speech datasets on the
Hugging Face Hub:
| Dataset | Size / h | Speakers | Domain | Licence |
| --------------------------------------------------------------------------------------------- | -------- | -------- | ------------------ | ----------------------------------------------------------- |
| [Common Voice 17](https://huggingface.co./datasets/mozilla-foundation/common_voice_17_0) | 1,014 | unknown | Narrated Wikipedia | [CC0-1.0](https://choosealicense.com/licenses/cc0-1.0/) |
| [MultiLingual LibriSpeech](https://huggingface.co./datasets/facebook/multilingual_librispeech) | 1,077 | 142 | Audiobook | [CC-BY-4.0](https://choosealicense.com/licenses/cc-by-4.0/) |
| [YODAS fr000 split](https://huggingface.co./datasets/espnet/yodas) | 2,424 | unknown | YouTube | [CC-BY-3.0](https://creativecommons.org/licenses/by/3.0/) |
| **Total** | 4,515 | 142+ | | |
The audio data is then pseudo-labelled using the Whisper large-v3 model: we use Whisper to generate predictions for all
the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the
transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.
#### WER Filter
The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on
accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
a specified threshold, we discard the training example. Otherwise, we keep it for training.
We chose for this training a WER threshold of 20%, resulting in an **effective training set of 2110 hours** (750 for [Common Voice 17](https://huggingface.co./datasets/mozilla-foundation/common_voice_17_0), 1040 for [MultiLingual LibriSpeech](https://huggingface.co./datasets/facebook/multilingual_librispeech) and 320 for [YODAS fr000 split](https://huggingface.co./datasets/espnet/yodas)).
Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter
for improving downstream performance of the distilled model. We also partially attribute Distil-Whisper's robustness to
hallucinations to this filter.
#### Training procedure
The model was trained for 18,000 optimisation steps (or 14 epochs) with batch size 256. We saved the best model, based on the global wer score on validation splits, reached after 14,000 optimization steps (or 11 epochs). See the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) for more details (training objective, etc).
## Results
The distilled model performs to within 1% WER of Whisper large-v3 on out-of-distribution (Voxpopuli, Fleurs) short-form audio and within
2.5% WER on out-of-distribuion sequential long-form decoding.
### Evaluation methodology
The model has been tested for both in-distribution (Common Voice 17 and Multilingual Librispeech) and out-of-distribution (Fleurs, Voxpopuli, custom [long-form test set](https://huggingface.co./datasets/speech-recognition-community-v2/dev_data)) short-form and long-form transcription performances. Models have been evaluated with SDPA, float32 and batch size 32.
**Short-form evaluations** are conducted on the four given datasets by first applying a filter to exclude samples longer than 30 seconds.
**Long-form evaluation** is conducted on a custom out-of-distribution [long-form test set](https://huggingface.co./datasets/eustlb/french-long-form-test) using OpenAI's sequential long-form transcription algorithm (see [Sequential Long-Form](#sequential-long-form) section) with long-form generation parameters that can be found [here](https://github.com/huggingface/distil-whisper/blob/a5ed489ba6edb405ecef334ba0feec1bdca7a948/training/run_eval.py#L670C5-L676C6).
### Short-Form
| Model | Common Voice 17 | Multilingual Librispeech | voxpopuli | fleurs | RTFx |
| :--------------------- | :-------------: | :----------------------: | :--------: | :-------: | :---------: |
| whisper-tiny | 57.141 | 38.049 | 32.346 | 47.4 | 265.226 |
| whisper-base | 42.58 | 25.235 | 26.701 | 27.773 | 237.195 |
| whisper-small | 22.56 | 13.576 | 14.486 | 14.165 | 196.932 |
| whisper-medium | 15.51 | 9.541 | 11.836 | 9.992 | 93.428 |
| whisper-large-v3 | 11.038 | 4.762 | 9.83 | 5.624 | 62.845 |
| **distil-large-v3-fr** | **12.675** | **5.865** | **10.832** | **7.989** | **106.291** |
*the above datasets correspond to test splits
*RTFx = 1 / RTF, where RTF is the [Real Time Factor](https://openvoice-tech.net/wiki/Real-time-factor). To be interpreted as audio processed (in seconds) per second of processing.
### Long-Form
| Model Name | RTFx | [long-form test set](https://huggingface.co./datasets/eustlb/french-long-form-test) |
| :--------------------: | :---------: | :--------------------------------------------------------------------------------: |
| whisper-tiny | 121.389 | 28.158 |
| whisper-base | 109.366 | 18.665 |
| whisper-small | 83.049 | 12.557 |
| whisper-medium | 47.807 | 11.023 |
| whisper-large-v3 | 38.294 | 9.008 |
| **distil-large-v3-fr** | **101.326** | **11.13** |
### Inference speed
Reported latencies were benchmarked on a 40GB nvidia A100, generating 128 tokens with SDPA, bfloat16, 3 warmup steps, 5 measures, one beam.
The benchmarking script can be found [here](https://gist.github.com/eustlb/ef06f00858cbae4d8743f5024be869ec). The time measured is the time do one forward pass of the encoder and 128 autoregressive forward passes of the decoder.
<p align="center">
<img src="https://huggingface.co./eustlb/distil-large-v3-fr/resolve/main/assets/relative_latencies.png" alt="latencies" width="100%">
</p>
## Reproducing Distil-Whisper
Training and evaluation code to reproduce Distil-Whisper is available under the Distil-Whisper repository: https://github.com/huggingface/distil-whisper/tree/main/training
## License
distil-large-v3-fr inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
## Citation
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
```
@misc{gandhi2023distilwhisper,
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
year={2023},
eprint={2311.00430},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Acknowledgements
* OpenAI for the Whisper [model](https://huggingface.co./openai/whisper-large-v3), in particular Jong Wook Kim for the [original codebase](https://github.com/openai/whisper) and training discussions
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration
* [Georgi Gerganov](https://huggingface.co./ggerganov) for the Whisper cpp integration
* [Joshua Lochner](https://huggingface.co./xenova) for the Transformers.js integration
* [Vaibhav Srivastav](https://huggingface.co./reach-vb) for Distil-Whisper distribution
* [Raghav Sonavane](https://huggingface.co./rsonavane/distil-whisper-large-v2-8-ls) for an early iteration of Distil-Whisper on the LibriSpeech datasets |