Automatic Speech Recognition
Transformers
Safetensors
French
whisper
asr
Eval Results
Inference Endpoints
File size: 30,018 Bytes
e4cb14c
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ce9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349fa6
f8ce9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349fa6
f8ce9a7
 
 
 
 
 
 
 
 
 
 
 
 
3349fa6
e4cb14c
88b6b00
9916679
 
 
 
 
 
ae5214a
9916679
 
 
97c190a
 
 
 
 
 
9916679
 
 
 
88b6b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d7d08
88b6b00
 
 
 
9916679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b6b00
9916679
 
88b6b00
 
9916679
88b6b00
9916679
 
 
 
 
 
 
 
 
 
 
 
 
 
88b6b00
9916679
88b6b00
 
 
 
 
 
 
9916679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a16b87
88b6b00
 
 
 
 
3da752d
88b6b00
4a16b87
 
 
9916679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a16b87
9916679
 
 
 
 
 
88b6b00
9916679
 
 
 
 
 
4a16b87
9916679
88b6b00
9916679
 
 
 
 
 
 
88b6b00
 
5265a3b
88b6b00
 
 
ea9549d
88b6b00
9916679
 
85e88e4
 
 
 
 
 
 
 
 
9916679
954a00f
9916679
aa5793b
9916679
 
 
3658ad2
 
 
 
 
 
 
 
85e88e4
561b47e
9916679
 
 
 
 
88b6b00
9916679
 
 
b35f874
9916679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b6b00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
---
license: mit
datasets:
- mozilla-foundation/common_voice_17_0
- espnet/yodas
- facebook/multilingual_librispeech
language:
- fr
metrics:
- wer
pipeline_tag: automatic-speech-recognition
tags:
- asr
- whisper
model-index:
- name: distil-large-v3-fr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0, short-form (<= 30sec)
      type: mozilla-foundation/common_voice_17_0
      config: fr
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 12.675
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech, short-form (<= 30sec)
      type: facebook/multilingual_librispeech
      config: french
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 5.865
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: VoxPopuli, short-form (<= 30sec)
      type: facebook/voxpopuli
      config: fr
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 10.832
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Fleurs, short-form (<= 30sec)
      type: google/fleurs
      config: fr_fr
      split: test
      args:
        language: fr
    metrics:
    - name: WER
      type: wer
      value: 7.989
---

# Distil-Whisper: distil-large-v3-fr

Distil-Whisper for English Automatic Speech Recognition (ASR) was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).

This is the knowledge distilled version of OpenAI's [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3) for French ASR.

The result is a distilled model that performs within **2% WER of [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3)** on out-of-distribution evaluation sets for both short-form and long form transcription. Moreover, it is **5.9x** faster than [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3) and **1.3** times faster than the tiniest version of whisper while being incomparably more accurate.

| Model                  | Params (M) | Rel. Latency | Short-Form WER | Long-Form WER |
| :--------------------- | :--------: | :----------: | :------------: | :-----------: |
| whisper-tiny           |    37.8    |     4.7      |     43.7       |    28.2       |
| whisper-base           |    72.6    |     3.7      |     30.6       |    18.7       |
| whisper-small          |    242     |     2.3      |     16.2       |    12.6       |
| whisper-medium         |    764     |     1.3      |     11.7       |    11.0       |
| whisper-large-v3       |    1540    |     1.0      |      7.8       |     9.0       |
| **distil-large-v3-fr** |  **756**   |   **5.9**    |    **9.3**     |   **11.1**    |

*latencies benchmarked to generate 128 tokens on A100 40GB with a batch size of 1. More details about inference performances in [inference speed](#inference-speed) section.   
*WERs are averaged on the test sets. More details in [short-form](#short-form) and [long-form](#long-form) results sections.

## Table of Contents

1. [Transformers Usage](#transformers-usage)
   * [Short-Form Transcription](#short-form-transcription)
   * [Sequential Long-Form](#sequential-long-form)
   * [Chunked Long-Form](#chunked-long-form)
   * [Speculative Decoding](#speculative-decoding)
   * [Additional Speed and Memory Improvements](#additional-speed--memory-improvements)
2. [Library Integrations](#library-integrations)
   * [Whisper cpp](#whispercpp)
   * [Transformers.js](#transformersjs)
3. [Model Details](#model-details)
   * [Architecture](#architecture)
   * [Training](#training)
4. [Results](#results)
   * [Evaluation methodology](#evaluation-methodology)
   * [Short-Form](#short-form)
   * [Long-Form](#long-form)
   * [Inference Speed](#inference-speed)
4. [License](#license)


## Transformers Usage 

distil-large-v3-fr is supported in the Hugging Face 🤗 Transformers library from version 4.41 onwards. To run the model, first 
install the latest version of Transformers. For this example, we'll also install 🤗 Datasets to load a toy audio dataset 
from the Hugging Face Hub:

```bash
pip install --upgrade pip
pip install --upgrade transformers accelerate datasets[audio]
```

### Short-Form Transcription

The model can be used with the [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe short-form audio files (< 30-seconds) as follows:

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "eustlb/distil-large-v3-fr"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
sample = next(iter(dataset))["audio"] 

result = pipe(sample)
print(result["text"])
```

To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```diff
- result = pipe(sample)
+ result = pipe("audio.mp3")
```

For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
```python
result = pipe(sample, return_timestamps=True)
print(result["chunks"])
```

<details>

<summary> For more control over the generation parameters, use the model + processor API directly: </summary>

Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps` 
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co./docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
for more details.

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from datasets import Audio, load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "eustlb/distil-large-v3-fr"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
sample = next(iter(dataset))["audio"] 

input_features = processor(
  sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
).input_features

input_features = input_features.to(device, dtype=torch_dtype)

gen_kwargs = {
  "max_new_tokens": 128,
  "num_beams": 1,
  "return_timestamps": False,
}

pred_ids = model.generate(input_features, **gen_kwargs)
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])

print(pred_text)
```

</details>

### Sequential Long-Form

distil-large-v3 is compatible with OpenAI's sequential
long-form transcription algorithm. This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).

The sequential long-form algorithm should be used in either of the following scenarios:
1. Transcription accuracy is the most important factor, and latency is less of a consideration
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate

If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of 
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf).

The [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) 
class can be used to transcribe long audio files with the sequential algorithm as follows: 

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "eustlb/distil-large-v3-fr"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
sample = next(iter(dataset))["audio"]

result = pipe(sample)
print(result["text"])
```

<details>

<summary> For more control over the generation parameters, use the model + processor API directly: </summary>

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from datasets import Audio, load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "eustlb/distil-large-v3-fr"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
sample = next(iter(dataset))["audio"]

inputs = processor(
    sample["array"],
    sampling_rate=sample["sampling_rate"],
    return_tensors="pt",
    truncation=False,
    padding="longest",
    return_attention_mask=True,
)
inputs = inputs.to(device, dtype=torch_dtype)

gen_kwargs = {
    "max_new_tokens": 448,
    "num_beams": 1,
    "condition_on_prev_tokens": False,
    "compression_ratio_threshold": 1.35,  # zlib compression ratio threshold (in token space)
    "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    "logprob_threshold": -1.0,
    "no_speech_threshold": 0.6,
    "return_timestamps": True,
}

pred_ids = model.generate(**inputs, **gen_kwargs)
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)

print(pred_text)
```

</details>


### Chunked Long-Form

distil-large-v3-fr remains compatible with the Transformers chunked long-form algorithm. This algorithm should be used when 
a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances, 
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the 
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).

To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3-fr, a chunk length of 25-seconds
is optimal. To activate batching over long audio files, pass the argument `batch_size`:

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "eustlb/distil-large-v3-fr"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=25,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("eustlb/french-long-form-test", split="test", streaming=True)
sample = next(iter(dataset))["audio"] 

result = pipe(sample)
print(result["text"])
```

### Speculative Decoding

distil-large-v3 is the first Distil-Whisper model that can be used as an assistant to Whisper large-v3 for [speculative decoding](https://huggingface.co./blog/whisper-speculative-decoding).
Speculative decoding mathematically ensures that exactly the same outputs as Whisper are obtained, while being 2 times faster. 
This makes it the perfect drop-in replacement for existing Whisper pipelines, since the same outputs are guaranteed.

In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
specify it as the "assistant model" for generation:

```python
from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor
import torch
from datasets import load_dataset

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

assistant_model_id = "eustlb/distil-large-v3-fr"

assistant_model = AutoModelForCausalLM.from_pretrained(
    assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
assistant_model.to(device)

model_id = "openai/whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    generate_kwargs={"assistant_model": assistant_model},
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("google/fleurs", "fr_fr", split="train", streaming=True)
sample = next(iter(dataset))["audio"] 

result = pipe(sample)
print(result["text"])
```

For more details on speculative decoding, refer to the blog post [Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co./blog/whisper-speculative-decoding).

### Additional Speed & Memory Improvements

You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM 
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a 
more efficient flash attention version.

#### Flash Attention 2

We recommend using [Flash-Attention 2](https://huggingface.co./docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) 
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):

```
pip install flash-attn --no-build-isolation
```

Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:

```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
```

#### Torch Scale-Product-Attention (SDPA)

If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html). 
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check 
whether you have a compatible PyTorch version, run the following Python code snippet:

```python
from transformers.utils import is_torch_sdpa_available

print(is_torch_sdpa_available())
```

If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it 
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)

Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying 
`attn_implementation="sdpa"` as follows:

```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
```

For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co./docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).

#### Torch compile

Coming soon...

#### 4-bit and 8-bit Inference

Coming soon...

## Library Integrations

### Whisper.cpp

distil-large-v3-fr can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original 
sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster 
than Whisper large-v3, while performing to within 0.8% WER over long-form audio.

Steps for getting started:

1. Clone the Whisper.cpp repository:
```bash
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
```

2. Install the Hugging Face Hub Python package:

```bash
pip install --upgrade huggingface_hub
```
And download the GGML weights for distil-large-v3 using the following Python snippet:

```python
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id='eustlb/distil-large-v3-fr-ggml', filename='ggml-distil-large-v3-fr.bin', local_dir='./models')
```

Note that if you do not have a Python environment set-up, you can also download the weights directly with `wget`:

```bash
wget https://huggingface.co./eustlb/distil-large-v3-fr-ggml/resolve/main/ggml-distil-large-v3-fr.bin -P ./models
````
3. Run inference 

```bash
wget https://huggingface.co./spaces/eustlb/whisper-vs-distil-whisper-fr/resolve/main/assets/example_1.wav
make -j && ./main -m models/ggml-distil-large-v3-fr.bin -f example_1.wav
```


### Transformers.js

Distil-Whisper can be run completely in your web browser with [Transformers.js](http://github.com/xenova/transformers.js):

1. Install Transformers.js from [NPM](https://www.npmjs.com/package/@xenova/transformers):

```bash
npm i @xenova/transformers
```

2. Import the library and perform inference with the pipeline API.

```js
import { pipeline } from '@xenova/transformers';

const transcriber = await pipeline('automatic-speech-recognition', 'eustlb/distil-large-v3-fr');

const url = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await transcriber(url);
// { text: " And so, my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." }
```

Refer to the Transformers.js [docs](https://huggingface.co./docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline) 
for further information.

## Model Details

### Architecture

Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of total inference time. Thus, to optimise for latency, the focus is on minimising the inference time of the decoder.

To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed. The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training. The student's decoder structure is copied from [Whisper large-v3](https://huggingface.co./openai/whisper-large-v3), with the only difference being a reduction from 32 to 2 decoder layers. These layers are initialized from distil-large-v3 to leverage language transfer from English to French (more details [here](https://github.com/huggingface/distil-whisper/tree/main/training#22-language-transfer)).

### Training

#### Data

distil-large-v3-fr is trained on 4,515 hours of audio data from three open-source, permissively licensed speech datasets on the 
Hugging Face Hub:

| Dataset                                                                                       | Size / h | Speakers | Domain             | Licence                                                     |
| --------------------------------------------------------------------------------------------- | -------- | -------- | ------------------ | ----------------------------------------------------------- |
| [Common Voice 17](https://huggingface.co./datasets/mozilla-foundation/common_voice_17_0)       | 1,014    | unknown  | Narrated Wikipedia | [CC0-1.0](https://choosealicense.com/licenses/cc0-1.0/)     |
| [MultiLingual LibriSpeech](https://huggingface.co./datasets/facebook/multilingual_librispeech) | 1,077    | 142      | Audiobook          | [CC-BY-4.0](https://choosealicense.com/licenses/cc-by-4.0/) |
| [YODAS fr000 split](https://huggingface.co./datasets/espnet/yodas)                             | 2,424    | unknown  | YouTube            | [CC-BY-3.0](https://creativecommons.org/licenses/by/3.0/)   |
| **Total**                                                                                     | 4,515    | 142+     |                    |                                                             |


The audio data is then pseudo-labelled using the Whisper large-v3 model: we use Whisper to generate predictions for all 
the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the 
transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.

#### WER Filter

The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on 
accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
a specified threshold, we discard the training example. Otherwise, we keep it for training.

We chose for this training a WER threshold of 20%, resulting in an **effective training set of 2110 hours** (750 for [Common Voice 17](https://huggingface.co./datasets/mozilla-foundation/common_voice_17_0), 1040 for [MultiLingual LibriSpeech](https://huggingface.co./datasets/facebook/multilingual_librispeech) and 320 for [YODAS fr000 split](https://huggingface.co./datasets/espnet/yodas)).


Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter 
for improving downstream performance of the distilled model. We also partially attribute Distil-Whisper's robustness to 
hallucinations to this filter.

#### Training procedure

The model was trained for 18,000 optimisation steps (or 14 epochs) with batch size 256. We saved the best model, based on the global wer score on validation splits, reached after 14,000 optimization steps (or 11 epochs). See the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) for more details (training objective, etc).

## Results

The distilled model performs to within 1% WER of Whisper large-v3 on out-of-distribution (Voxpopuli, Fleurs) short-form audio and within
2.5% WER on out-of-distribuion sequential long-form decoding. 


### Evaluation methodology

The model has been tested for both in-distribution (Common Voice 17 and Multilingual Librispeech) and out-of-distribution (Fleurs, Voxpopuli, custom [long-form test set](https://huggingface.co./datasets/speech-recognition-community-v2/dev_data)) short-form and long-form transcription performances. Models have been evaluated with SDPA, float32 and batch size 32. 

**Short-form evaluations** are conducted on the four given datasets by first applying a filter to exclude samples longer than 30 seconds.

**Long-form evaluation** is conducted on a custom out-of-distribution [long-form test set](https://huggingface.co./datasets/eustlb/french-long-form-test) using OpenAI's sequential long-form transcription algorithm (see [Sequential Long-Form](#sequential-long-form) section) with long-form generation parameters that can be found [here](https://github.com/huggingface/distil-whisper/blob/a5ed489ba6edb405ecef334ba0feec1bdca7a948/training/run_eval.py#L670C5-L676C6).  

### Short-Form

| Model                  | Common Voice 17 | Multilingual Librispeech | voxpopuli  |  fleurs   |    RTFx     |
| :--------------------- | :-------------: | :----------------------: | :--------: | :-------: | :---------: |
| whisper-tiny           |     57.141      |          38.049          |   32.346   |   47.4    |   265.226   |
| whisper-base           |      42.58      |          25.235          |   26.701   |  27.773   |   237.195   |
| whisper-small          |      22.56      |          13.576          |   14.486   |  14.165   |   196.932   |
| whisper-medium         |      15.51      |          9.541           |   11.836   |   9.992   |   93.428    |
| whisper-large-v3       |     11.038      |          4.762           |    9.83    |   5.624   |   62.845    |
| **distil-large-v3-fr** |   **12.675**    |        **5.865**         | **10.832** | **7.989** | **106.291** |


*the above datasets correspond to test splits

*RTFx = 1 / RTF, where RTF is the [Real Time Factor](https://openvoice-tech.net/wiki/Real-time-factor). To be interpreted as audio processed (in seconds) per second of processing.
### Long-Form


|       Model Name       |    RTFx     | [long-form test set](https://huggingface.co./datasets/eustlb/french-long-form-test) |
| :--------------------: | :---------: | :--------------------------------------------------------------------------------: |
|      whisper-tiny      |   121.389   |                                       28.158                                       |
|      whisper-base      |   109.366   |                                       18.665                                       |
|     whisper-small      |   83.049    |                                       12.557                                       |
|     whisper-medium     |   47.807    |                                       11.023                                       |
|    whisper-large-v3    |   38.294    |                                       9.008                                        |
| **distil-large-v3-fr** | **101.326** |                                     **11.13**                                      |




### Inference speed

Reported latencies were benchmarked on a 40GB nvidia A100, generating 128 tokens with SDPA, bfloat16, 3 warmup steps, 5 measures, one beam.
The benchmarking script can be found [here](https://gist.github.com/eustlb/ef06f00858cbae4d8743f5024be869ec). The time measured is the time do one forward pass of the encoder and 128 autoregressive forward passes of the decoder. 


<p align="center">
  <img src="https://huggingface.co./eustlb/distil-large-v3-fr/resolve/main/assets/relative_latencies.png" alt="latencies" width="100%">
</p>



## Reproducing Distil-Whisper

Training and evaluation code to reproduce Distil-Whisper is available under the Distil-Whisper repository: https://github.com/huggingface/distil-whisper/tree/main/training

## License

distil-large-v3-fr inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.

## Citation

If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
```
@misc{gandhi2023distilwhisper,
      title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, 
      author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
      year={2023},
      eprint={2311.00430},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## Acknowledgements
* OpenAI for the Whisper [model](https://huggingface.co./openai/whisper-large-v3), in particular Jong Wook Kim for the [original codebase](https://github.com/openai/whisper) and training discussions
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration
* [Georgi Gerganov](https://huggingface.co./ggerganov) for the Whisper cpp integration
* [Joshua Lochner](https://huggingface.co./xenova) for the Transformers.js integration
* [Vaibhav Srivastav](https://huggingface.co./reach-vb) for Distil-Whisper distribution
* [Raghav Sonavane](https://huggingface.co./rsonavane/distil-whisper-large-v2-8-ls) for an early iteration of Distil-Whisper on the LibriSpeech datasets