--- license: cc0-1.0 datasets: - JeanKaddour/minipile language: - en library_name: transformers --- GPT-NeoX trained on MiniPile, for a baseline to compare my MANN models against. Uses [NeelNanda/gpt-neox-tokenizer-digits](https://huggingface.co./NeelNanda/gpt-neox-tokenizer-digits) for tokenization. The exact model configuration is as follows: ``` cfg = GPTNeoXConfig( vocab_size = len(tokenizer), hidden_size = 768, intermediate_size = 768*4, num_hidden_layers = 12, num_attention_heads = 12, tie_word_embeddings = True, hidden_act = "gelu_new", tokenizer = "NeelNanda/gpt-neox-tokenizer-digits" ) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_euclaise__gpt-neox-122m-minipile-digits) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.1 | | ARC (25-shot) | 20.73 | | HellaSwag (10-shot) | 27.03 | | MMLU (5-shot) | 25.31 | | TruthfulQA (0-shot) | 49.19 | | Winogrande (5-shot) | 52.33 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 1.09 |