from typing import Dict, List, Any import json import torch from transformers import BertTokenizerFast, BertForTokenClassification class EndpointHandler(): def __init__(self, path=""): # Load the tokenizer and model self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') self.model = BertForTokenClassification.from_pretrained(path) self.model.eval() self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model.to(self.device) # ID to label mapping self.id2label = { 0: 'O', 1: 'B-STEREO', 2: 'I-STEREO', 3: 'B-GEN', 4: 'I-GEN', 5: 'B-UNFAIR', 6: 'I-UNFAIR' } def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ Args: data (Dict[str, Any]): A dictionary containing the input text under 'inputs'. Returns: List[Dict[str, Any]]: A list of dictionaries with token labels. """ # Extract the input sentence sentence = data.get("inputs", "") if not sentence: return [{"error": "Input 'inputs' is required."}] # Tokenize the input sentence inputs = self.tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128) input_ids = inputs['input_ids'].to(self.device) attention_mask = inputs['attention_mask'].to(self.device) # Run inference with torch.no_grad(): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) logits = outputs.logits probabilities = torch.sigmoid(logits) predicted_labels = (probabilities > 0.5).int() # Prepare the result result = [] tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0]) for i, token in enumerate(tokens): if token not in self.tokenizer.all_special_tokens: label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1) labels = [self.id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O'] result.append({"token": token, "labels": labels}) return result