--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-32B-Instruct tags: - generated_from_trainer datasets: - Fizzarolli/inkmix-v2 model-index: - name: ckpts results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-32B-Instruct load_in_8bit: true load_in_4bit: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true strict: false adapter: lora lora_r: 16 lora_alpha: 32 lora_dropout: 0.25 lora_target_linear: true peft_layers_to_transform: loraplus_lr_ratio: 16 chat_template: chatml datasets: - path: Fizzarolli/inkmix-v2 type: chat_template chat_template: tokenizer_default split: train field_messages: conversations message_field_role: from message_field_content: value dataset_prepared_path: last_run_prepared #val_set_size: 0.02 output_dir: ./ckpts sequence_len: 8192 sample_packing: true pad_to_sequence_len: true #wandb_project: teleut-7b-rp #wandb_entity: #wandb_watch: #wandb_name: #wandb_log_model: checkpoint # mlflow configuration if you're using it mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud mlflow_experiment_name: tq-32b-rp-inkmixv2 mlflow_run_name: v1 hf_mlflow_log_artifacts: true gradient_accumulation_steps: 2 micro_batch_size: 8 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 6e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true #deepspeed: deepspeed_configs/zero3_bf16.json warmup_steps: 25 #evals_per_epoch: 4 eval_table_size: saves_per_epoch: 10 debug: weight_decay: 0.05 ```

# ckpts This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co./Qwen/Qwen2.5-32B-Instruct) on the Fizzarolli/inkmix-v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0