--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-brain-tumour-v2 results: - task: name: Image Classification type: image-classification dataset: name: essam24/brain-tumour-v2 type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8703703703703703 --- # vit-brain-tumour-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the essam24/brain-tumour-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5359 - Accuracy: 0.8704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1236 | 0.5128 | 100 | 0.5990 | 0.8481 | | 0.1695 | 1.0256 | 200 | 0.5359 | 0.8704 | | 0.0186 | 1.5385 | 300 | 0.5705 | 0.8975 | | 0.0368 | 2.0513 | 400 | 0.6136 | 0.8975 | | 0.0036 | 2.5641 | 500 | 0.6122 | 0.9012 | | 0.0029 | 3.0769 | 600 | 0.6067 | 0.9025 | | 0.0027 | 3.5897 | 700 | 0.6449 | 0.9025 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1