--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-food101-demo-v5 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8539405940594059 --- # vit-base-food101-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.5493 - Accuracy: 0.8539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.657 | 1.0 | 4735 | 0.9732 | 0.7459 | | 0.9869 | 2.0 | 9470 | 0.7987 | 0.7884 | | 0.71 | 3.0 | 14205 | 0.6364 | 0.8311 | | 0.4961 | 4.0 | 18940 | 0.5595 | 0.8487 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1