File size: 2,135 Bytes
7d5c1ec 0cd0214 7d5c1ec 533d98c 7d5c1ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- summarization
- urdu
- ur
- mt5
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
base_model: google/mt5-base
model-index:
- name: mt5-base-finetuned-urdu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-urdu
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) on Urdu subset the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8954
- Rouge-1: 28.84
- Rouge-2: 13.87
- Rouge-l: 25.63
- Gen Len: 19.0
- Bertscore: 71.31
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 3.6205 | 1.0 | 2114 | 3.0871 | 26.45 | 11.4 | 23.26 | 19.0 | 70.76 |
| 3.2169 | 2.0 | 4228 | 2.9830 | 27.19 | 11.91 | 23.95 | 19.0 | 70.92 |
| 3.0787 | 3.0 | 6342 | 2.9284 | 27.9 | 12.57 | 24.62 | 18.99 | 71.13 |
| 2.9874 | 4.0 | 8456 | 2.9049 | 28.28 | 12.91 | 24.99 | 18.99 | 71.28 |
| 2.9232 | 5.0 | 10570 | 2.8954 | 28.65 | 13.17 | 25.32 | 18.99 | 71.39 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|