--- tags: - summarization - en - seq2seq - mbart - Abstractive Summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: mbert-finetune-en-cnn results: - task: type: summarization name: Summarization dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test metrics: - name: ROUGE-1 type: rouge value: 40.5167 verified: true - name: ROUGE-2 type: rouge value: 17.9329 verified: true - name: ROUGE-L type: rouge value: 27.6258 verified: true - name: ROUGE-LSUM type: rouge value: 37.389 verified: true - name: loss type: loss value: 2.2861809730529785 verified: true - name: gen_len type: gen_len value: 87.9999 verified: true --- # mbert-finetune-en-cnn This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co./facebook/mbart-large-50) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 3.5577 - Rouge-1: 37.69 - Rouge-2: 16.47 - Rouge-l: 35.53 - Gen Len: 79.93 - Bertscore: 74.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1