--- tags: - summarization - Arat5-base - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: AraT5-base-title-generation-finetune-ar-xlsum results: [] --- # AraT5-base-title-generation-finetune-ar-xlsum This model is a fine-tuned version of [UBC-NLP/AraT5-base-title-generation](https://huggingface.co./UBC-NLP/AraT5-base-title-generation) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.2837 - Rouge-1: 31.55 - Rouge-2: 14.19 - Rouge-l: 27.52 - Gen Len: 18.65 - Bertscore: 74.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 5.815 | 1.0 | 293 | 4.7437 | 27.05 | 10.49 | 23.56 | 18.03 | 72.56 | | 5.0818 | 2.0 | 586 | 4.5004 | 28.92 | 11.97 | 25.09 | 18.61 | 73.08 | | 4.7855 | 3.0 | 879 | 4.3910 | 29.66 | 12.57 | 25.79 | 18.58 | 73.3 | | 4.588 | 4.0 | 1172 | 4.3469 | 30.22 | 13.05 | 26.36 | 18.59 | 73.61 | | 4.4388 | 5.0 | 1465 | 4.3226 | 30.88 | 13.81 | 27.01 | 18.65 | 73.78 | | 4.3162 | 6.0 | 1758 | 4.2990 | 30.9 | 13.6 | 26.92 | 18.68 | 73.78 | | 4.2178 | 7.0 | 2051 | 4.2869 | 31.35 | 14.01 | 27.41 | 18.57 | 73.96 | | 4.1387 | 8.0 | 2344 | 4.2794 | 31.28 | 13.98 | 27.34 | 18.6 | 73.87 | | 4.0787 | 9.0 | 2637 | 4.2806 | 31.45 | 14.17 | 27.46 | 18.66 | 73.97 | | 4.0371 | 10.0 | 2930 | 4.2837 | 31.55 | 14.19 | 27.52 | 18.65 | 74.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1