File size: 2,712 Bytes
9886da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
949723d
 
 
 
 
9886da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
tags:
- summarization
- Arat5-base
- abstractive summarization
- ar
- xlsum
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: AraT5-base-title-generation-finetune-ar-xlsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AraT5-base-title-generation-finetune-ar-xlsum

This model is a fine-tuned version of [UBC-NLP/AraT5-base-title-generation](https://huggingface.co./UBC-NLP/AraT5-base-title-generation) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2837
- Rouge-1: 32.46
- Rouge-2: 15.15
- Rouge-l: 28.38
- Gen Len: 18.48
- Bertscore: 74.24

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 10
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 5.815         | 1.0   | 293  | 4.7437          | 27.05   | 10.49   | 23.56   | 18.03   | 72.56     |
| 5.0818        | 2.0   | 586  | 4.5004          | 28.92   | 11.97   | 25.09   | 18.61   | 73.08     |
| 4.7855        | 3.0   | 879  | 4.3910          | 29.66   | 12.57   | 25.79   | 18.58   | 73.3      |
| 4.588         | 4.0   | 1172 | 4.3469          | 30.22   | 13.05   | 26.36   | 18.59   | 73.61     |
| 4.4388        | 5.0   | 1465 | 4.3226          | 30.88   | 13.81   | 27.01   | 18.65   | 73.78     |
| 4.3162        | 6.0   | 1758 | 4.2990          | 30.9    | 13.6    | 26.92   | 18.68   | 73.78     |
| 4.2178        | 7.0   | 2051 | 4.2869          | 31.35   | 14.01   | 27.41   | 18.57   | 73.96     |
| 4.1387        | 8.0   | 2344 | 4.2794          | 31.28   | 13.98   | 27.34   | 18.6    | 73.87     |
| 4.0787        | 9.0   | 2637 | 4.2806          | 31.45   | 14.17   | 27.46   | 18.66   | 73.97     |
| 4.0371        | 10.0  | 2930 | 4.2837          | 31.55   | 14.19   | 27.52   | 18.65   | 74.0      |


### Framework versions

- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1