--- license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - generated_from_trainer model-index: - name: outputs/model-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ericflo/SyntheticPython-Pretrain-v1 type: completion # max_steps: 200 # pretraining_dataset: # - path: ericflo/SyntheticPython-Pretrain-v1 # name: default # type: pretrain dataset_prepared_path: last_run_prepared2 val_set_size: 0.0 output_dir: ./outputs/model-out sequence_len: 8192 sample_packing: false wandb_project: syntheticpython wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/model-out This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1