--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: RoBERTa-large-GD1-v1 results: [] --- # RoBERTa-large-GD1-v1 This model is a fine-tuned version of [roberta-large](https://huggingface.co./roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7605 - Accuracy: 0.714 - F1: 0.7875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.631 | 1.0 | 1502 | 0.5333 | 0.766 | 0.8264 | | 0.5734 | 2.0 | 3004 | 0.5500 | 0.752 | 0.8195 | | 0.5938 | 3.0 | 4506 | 0.7605 | 0.714 | 0.7875 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3