--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_1_0 metrics: - wer model-index: - name: Whisper Small EN - erenozaltun-common1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 1.0 type: mozilla-foundation/common_voice_1_0 config: en split: None args: 'config: en, split: test' metrics: - name: Wer type: wer value: 21.97714323793023 --- # Whisper Small EN - erenozaltun-common1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 1.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3868 - Wer: 21.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1749 | 0.6588 | 500 | 0.3715 | 21.4957 | | 0.0885 | 1.3175 | 1000 | 0.3665 | 21.5340 | | 0.0905 | 1.9763 | 1500 | 0.3668 | 21.8322 | | 0.0387 | 2.6350 | 2000 | 0.3868 | 21.9771 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1