File size: 1,690 Bytes
61c9406
 
47d0159
1e5d80c
 
ac50f29
1e5d80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0970ea2
 
 
 
 
 
 
1e5d80c
61c9406
1e5d80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
language: pt
library_name: transformers
tags:
- extractive-qa
datasets:
- eraldoluis/faquad
metrics:
- squad

model-index:
- name: faquad-bert-base-portuguese-cased
  results:
  - task:
      type: extractive-qa
      name: Extractive Question-Answering
    dataset:
      type: eraldoluis/faquad
      name: FaQuAD
      split: eval
    metrics:
      - type: f1
        value: 83.0912959832023
        name: Eval F1 score (squad metric)
        verified: false
      - type: exact_match
        value: 74.53169347209082
        name: Eval ExactMatch score (squad metric)
        verified: false
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tmp_exs_faquad

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co./neuralmind/bert-base-portuguese-cased) on the [FaQuAD dataset](https://huggingface.co./datasets/eraldoluis/faquad).

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

The model was trained on the `train` split and evaluated on the `eval` split.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results



### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1