Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.17 +/- 0.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1448285f805f893adeab925f163b7ea09fa0a827fecc54c8a5854291ea044eb
|
3 |
+
size 107992
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a475bc700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9a475bad40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678577880488699127,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+mizPmCybDzh1QM/+mizPmCybDzh1QM/+mizPmCybDzh1QM/+mizPmCybDzh1QM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbvL3PsmzwD/2dJi/Uo+lP5yrmz/xuG6/1AW+P6Awo750jMs//CSRPr0tV7819dY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]]",
|
60 |
+
"desired_goal": "[[ 0.48427147 1.5054866 -1.1910694 ]\n [ 1.2934363 1.2161746 -0.9325095 ]\n [ 1.4845529 -0.31873035 1.5902238 ]\n [ 0.2834853 -0.84054166 1.6793581 ]]",
|
61 |
+
"observation": "[[0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4ayyO2JQQb0/Aj0+uDECvU2A9TwvO2M+tl7eveRjZT1aXx49kB0QvbXYvjyGIgo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.00545274 -0.0471958 0.18457888]\n [-0.0317857 0.02996841 0.22190545]\n [-0.10857908 0.05600347 0.03866515]\n [-0.03518444 0.02329669 0.03372433]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5Evo87+UhpRSlIwBbJRLMowBdJRHQKl15CRfWtl1fZQoaAZoCWgPQwiARX79EJv3v5SGlFKUaBVLMmgWR0CpdafChvitdX2UKGgGaAloD0MIhQX3Ax6Y5b+UhpRSlGgVSzJoFkdAqXVs9W6shnV9lChoBmgJaA9DCCh/944a0/e/lIaUUpRoFUsyaBZHQKl1K2ycCo11fZQoaAZoCWgPQwhVpS2u8ZnWv5SGlFKUaBVLMmgWR0Cpd+bm2b5NdX2UKGgGaAloD0MIbTttjQjG77+UhpRSlGgVSzJoFkdAqXeqaLGaQXV9lChoBmgJaA9DCPZ9OEiIsvG/lIaUUpRoFUsyaBZHQKl3bxoZhrp1fZQoaAZoCWgPQwgwSzs1l5vxv5SGlFKUaBVLMmgWR0Cpdy1Tzd1udX2UKGgGaAloD0MIbeNPVDZs8b+UhpRSlGgVSzJoFkdAqXnseMhounV9lChoBmgJaA9DCAFqatlaX+a/lIaUUpRoFUsyaBZHQKl5r+tKZlZ1fZQoaAZoCWgPQwgO95Fbk84CwJSGlFKUaBVLMmgWR0CpeXSBTXJ6dX2UKGgGaAloD0MIA3y3eePk/r+UhpRSlGgVSzJoFkdAqXkyp97Wu3V9lChoBmgJaA9DCIZWJ2cobv2/lIaUUpRoFUsyaBZHQKl7z+sHSnd1fZQoaAZoCWgPQwi5q1eR0YH6v5SGlFKUaBVLMmgWR0Cpe5MBZIQOdX2UKGgGaAloD0MIyt+9o8ZE+L+UhpRSlGgVSzJoFkdAqXtXvWpZOnV9lChoBmgJaA9DCFb0h2ae3Pa/lIaUUpRoFUsyaBZHQKl7Fjin5zp1fZQoaAZoCWgPQwj+8V61MuH9v5SGlFKUaBVLMmgWR0CpfVXX7LuAdX2UKGgGaAloD0MIbW+3JAfMAcCUhpRSlGgVSzJoFkdAqX0YIKMNt3V9lChoBmgJaA9DCL5ojxfS4f2/lIaUUpRoFUsyaBZHQKl827Pppvh1fZQoaAZoCWgPQwgaiGUzh0QDwJSGlFKUaBVLMmgWR0CpfJj1XeWOdX2UKGgGaAloD0MIXW4w1GGF+b+UhpRSlGgVSzJoFkdAqX50n9ehPHV9lChoBmgJaA9DCPhT46WbpAjAlIaUUpRoFUsyaBZHQKl+Ns67ulZ1fZQoaAZoCWgPQwjw+WGE8Cj6v5SGlFKUaBVLMmgWR0CpffpYLb5/dX2UKGgGaAloD0MITSzwFd169b+UhpRSlGgVSzJoFkdAqX23ied073V9lChoBmgJaA9DCN8a2CrBIvq/lIaUUpRoFUsyaBZHQKl/kPMB6rx1fZQoaAZoCWgPQwhEpnwIqgb5v5SGlFKUaBVLMmgWR0Cpf1MUh3aBdX2UKGgGaAloD0MIRga5izBF/r+UhpRSlGgVSzJoFkdAqX8WtOmBOHV9lChoBmgJaA9DCNy7Bn3p7em/lIaUUpRoFUsyaBZHQKl+09f1Hvt1fZQoaAZoCWgPQwhzLzArFCn/v5SGlFKUaBVLMmgWR0CpgKIf0VafdX2UKGgGaAloD0MI5pKq7SZYDMCUhpRSlGgVSzJoFkdAqYBkVYZEUnV9lChoBmgJaA9DCGsRUUzewAPAlIaUUpRoFUsyaBZHQKmAJ9qDbrV1fZQoaAZoCWgPQwgGDf0TXKzzv5SGlFKUaBVLMmgWR0Cpf+T6i0v5dX2UKGgGaAloD0MIEeM1r+os8r+UhpRSlGgVSzJoFkdAqYG7lJYkmnV9lChoBmgJaA9DCLvSMlLvaQPAlIaUUpRoFUsyaBZHQKmBfdO6/Zd1fZQoaAZoCWgPQwjxnC0gtG4XwJSGlFKUaBVLMmgWR0CpgUFY2bXpdX2UKGgGaAloD0MIms+52/WSCMCUhpRSlGgVSzJoFkdAqYD+mvW6LHV9lChoBmgJaA9DCBcP7zmwfAbAlIaUUpRoFUsyaBZHQKmC0gVXV9Z1fZQoaAZoCWgPQwgUBfpEnqTxv5SGlFKUaBVLMmgWR0CpgpRdQfp2dX2UKGgGaAloD0MIrn5skh9RCsCUhpRSlGgVSzJoFkdAqYJX9UCJXXV9lChoBmgJaA9DCPEO8KSFexHAlIaUUpRoFUsyaBZHQKmCFTYukDZ1fZQoaAZoCWgPQwigqGxYU9nqv5SGlFKUaBVLMmgWR0Cpg+q3NLUTdX2UKGgGaAloD0MIVRaFXRQ9DMCUhpRSlGgVSzJoFkdAqYOs6JZW73V9lChoBmgJaA9DCI9v7xr05fK/lIaUUpRoFUsyaBZHQKmDcG0NSZV1fZQoaAZoCWgPQwiqLAq7KBoHwJSGlFKUaBVLMmgWR0Cpgy1uivgWdX2UKGgGaAloD0MIghspWyRNA8CUhpRSlGgVSzJoFkdAqYUI//vOQnV9lChoBmgJaA9DCNUFvMywEQfAlIaUUpRoFUsyaBZHQKmEy2itaIN1fZQoaAZoCWgPQwgqG9ZUFgX6v5SGlFKUaBVLMmgWR0CphI7RfF72dX2UKGgGaAloD0MIYWu28pI/F8CUhpRSlGgVSzJoFkdAqYRL/Ot4iXV9lChoBmgJaA9DCOp7DcFxWf6/lIaUUpRoFUsyaBZHQKmGJZrYXft1fZQoaAZoCWgPQwhwe4LEdtcIwJSGlFKUaBVLMmgWR0Cphefh2nsLdX2UKGgGaAloD0MI/dgkP+JX97+UhpRSlGgVSzJoFkdAqYWrX4CZGHV9lChoBmgJaA9DCL4ViQlqePu/lIaUUpRoFUsyaBZHQKmFaHLRrrR1fZQoaAZoCWgPQwjFG5lH/uD1v5SGlFKUaBVLMmgWR0Cphz0r08NhdX2UKGgGaAloD0MI1T+IZMjx8b+UhpRSlGgVSzJoFkdAqYb/Vf/m1nV9lChoBmgJaA9DCJtattYXyfG/lIaUUpRoFUsyaBZHQKmGwtnPE891fZQoaAZoCWgPQwiw5CoWv2kTwJSGlFKUaBVLMmgWR0Cphn/eLvTgdX2UKGgGaAloD0MIvRk1XyUf8L+UhpRSlGgVSzJoFkdAqYhVJvo/zXV9lChoBmgJaA9DCEyMZfolovG/lIaUUpRoFUsyaBZHQKmIF2wFC9h1fZQoaAZoCWgPQwhxkBDlC9riv5SGlFKUaBVLMmgWR0Cph9r0SRKZdX2UKGgGaAloD0MI+Z0mM94W9r+UhpRSlGgVSzJoFkdAqYeYQHzH0nV9lChoBmgJaA9DCChHAaJgxuu/lIaUUpRoFUsyaBZHQKmJb50r9VF1fZQoaAZoCWgPQwiC4zJuakAIwJSGlFKUaBVLMmgWR0CpiTHF5v9+dX2UKGgGaAloD0MIpbvrbMjfC8CUhpRSlGgVSzJoFkdAqYj1TWGyonV9lChoBmgJaA9DCJTeN772TPe/lIaUUpRoFUsyaBZHQKmIsmmce8x1fZQoaAZoCWgPQwjdmJ6wxEP0v5SGlFKUaBVLMmgWR0Cpiocnuy/sdX2UKGgGaAloD0MI2Lj+XZ+58r+UhpRSlGgVSzJoFkdAqYpJacI7eXV9lChoBmgJaA9DCF5HHLKBdPa/lIaUUpRoFUsyaBZHQKmKDObiIcl1fZQoaAZoCWgPQwhXJZF9kGXwv5SGlFKUaBVLMmgWR0Cpicn9vS+hdX2UKGgGaAloD0MIwOyePCyU9L+UhpRSlGgVSzJoFkdAqYuhVIZqEnV9lChoBmgJaA9DCB9N9WT+kfK/lIaUUpRoFUsyaBZHQKmLY5wwTM91fZQoaAZoCWgPQwiXi/hOzFoGwJSGlFKUaBVLMmgWR0Cpiycc2itadX2UKGgGaAloD0MI+pekMsWcD8CUhpRSlGgVSzJoFkdAqYrkOqebu3V9lChoBmgJaA9DCNoaEYyDy+W/lIaUUpRoFUsyaBZHQKmMvkOqebx1fZQoaAZoCWgPQwgAcVevIiPnv5SGlFKUaBVLMmgWR0CpjICHRCyAdX2UKGgGaAloD0MIZof4hy09+7+UhpRSlGgVSzJoFkdAqYxEBOpKjHV9lChoBmgJaA9DCGqHvyZr1P+/lIaUUpRoFUsyaBZHQKmMAQ+2Vml1fZQoaAZoCWgPQwhklGdeDlsJwJSGlFKUaBVLMmgWR0Cpjdi97F85dX2UKGgGaAloD0MIA5mdRe9U+b+UhpRSlGgVSzJoFkdAqY2bAN5MUXV9lChoBmgJaA9DCIjZy7bTVgXAlIaUUpRoFUsyaBZHQKmNXlEJBxB1fZQoaAZoCWgPQwiduByvQNQJwJSGlFKUaBVLMmgWR0CpjRtvn8sMdX2UKGgGaAloD0MIc/bOaKvS8r+UhpRSlGgVSzJoFkdAqY93cDbJwXV9lChoBmgJaA9DCLtkHCPZww3AlIaUUpRoFUsyaBZHQKmPOoUi6hB1fZQoaAZoCWgPQwj6uDZUjPPov5SGlFKUaBVLMmgWR0Cpjv7sniNsdX2UKGgGaAloD0MIcqYJ208G87+UhpRSlGgVSzJoFkdAqY68+kgwGnV9lChoBmgJaA9DCED4UKIljwHAlIaUUpRoFUsyaBZHQKmRQCIUJv51fZQoaAZoCWgPQwjBqKROQJMDwJSGlFKUaBVLMmgWR0CpkQMTN+spdX2UKGgGaAloD0MIMPDce7gECcCUhpRSlGgVSzJoFkdAqZDHdsSCe3V9lChoBmgJaA9DCFt8CoDxDALAlIaUUpRoFUsyaBZHQKmQhU83dbh1fZQoaAZoCWgPQwju6eqOxfbzv5SGlFKUaBVLMmgWR0CpkwqveP7vdX2UKGgGaAloD0MIEXFzKhlAAMCUhpRSlGgVSzJoFkdAqZLNxwQ18HV9lChoBmgJaA9DCFUzaykg7fK/lIaUUpRoFUsyaBZHQKmSklme18d1fZQoaAZoCWgPQwjDZKpgVJIHwJSGlFKUaBVLMmgWR0CpklBakhzOdX2UKGgGaAloD0MIRwN4CySoDcCUhpRSlGgVSzJoFkdAqZTsUoKD03V9lChoBmgJaA9DCDtvY7MjFQPAlIaUUpRoFUsyaBZHQKmUr4Pf8/F1fZQoaAZoCWgPQwiWzRySWqgBwJSGlFKUaBVLMmgWR0CplHPmozeodX2UKGgGaAloD0MIYp8AipGFCsCUhpRSlGgVSzJoFkdAqZQx7HAAQ3V9lChoBmgJaA9DCIrIsIo3UgPAlIaUUpRoFUsyaBZHQKmWwnsLORl1fZQoaAZoCWgPQwih2Aqalhj0v5SGlFKUaBVLMmgWR0CploW6bvw3dX2UKGgGaAloD0MI4PYEie1uBMCUhpRSlGgVSzJoFkdAqZZKMYMvy3V9lChoBmgJaA9DCNXNxd/2BPq/lIaUUpRoFUsyaBZHQKmWCB19v0h1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c310f994ca795a430f42c653b5bc52a330e14c20222d1991044656371fb9e320
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe161371ff140cce9753ebac9eb2751d9ffe945e754772391841af20a992173b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a475bc700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9a475bad40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678577880488699127, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+mizPmCybDzh1QM/+mizPmCybDzh1QM/+mizPmCybDzh1QM/+mizPmCybDzh1QM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbvL3PsmzwD/2dJi/Uo+lP5yrmz/xuG6/1AW+P6Awo750jMs//CSRPr0tV7819dY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjv6aLM+YLJsPOHVAz9N11k8U+UMO3wKmjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]\n [0.35041028 0.01444682 0.5149823 ]]", "desired_goal": "[[ 0.48427147 1.5054866 -1.1910694 ]\n [ 1.2934363 1.2161746 -0.9325095 ]\n [ 1.4845529 -0.31873035 1.5902238 ]\n [ 0.2834853 -0.84054166 1.6793581 ]]", "observation": "[[0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]\n [0.35041028 0.01444682 0.5149823 0.01329596 0.0021499 0.00470096]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4ayyO2JQQb0/Aj0+uDECvU2A9TwvO2M+tl7eveRjZT1aXx49kB0QvbXYvjyGIgo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00545274 -0.0471958 0.18457888]\n [-0.0317857 0.02996841 0.22190545]\n [-0.10857908 0.05600347 0.03866515]\n [-0.03518444 0.02329669 0.03372433]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9yAE5Evo87+UhpRSlIwBbJRLMowBdJRHQKl15CRfWtl1fZQoaAZoCWgPQwiARX79EJv3v5SGlFKUaBVLMmgWR0CpdafChvitdX2UKGgGaAloD0MIhQX3Ax6Y5b+UhpRSlGgVSzJoFkdAqXVs9W6shnV9lChoBmgJaA9DCCh/944a0/e/lIaUUpRoFUsyaBZHQKl1K2ycCo11fZQoaAZoCWgPQwhVpS2u8ZnWv5SGlFKUaBVLMmgWR0Cpd+bm2b5NdX2UKGgGaAloD0MIbTttjQjG77+UhpRSlGgVSzJoFkdAqXeqaLGaQXV9lChoBmgJaA9DCPZ9OEiIsvG/lIaUUpRoFUsyaBZHQKl3bxoZhrp1fZQoaAZoCWgPQwgwSzs1l5vxv5SGlFKUaBVLMmgWR0Cpdy1Tzd1udX2UKGgGaAloD0MIbeNPVDZs8b+UhpRSlGgVSzJoFkdAqXnseMhounV9lChoBmgJaA9DCAFqatlaX+a/lIaUUpRoFUsyaBZHQKl5r+tKZlZ1fZQoaAZoCWgPQwgO95Fbk84CwJSGlFKUaBVLMmgWR0CpeXSBTXJ6dX2UKGgGaAloD0MIA3y3eePk/r+UhpRSlGgVSzJoFkdAqXkyp97Wu3V9lChoBmgJaA9DCIZWJ2cobv2/lIaUUpRoFUsyaBZHQKl7z+sHSnd1fZQoaAZoCWgPQwi5q1eR0YH6v5SGlFKUaBVLMmgWR0Cpe5MBZIQOdX2UKGgGaAloD0MIyt+9o8ZE+L+UhpRSlGgVSzJoFkdAqXtXvWpZOnV9lChoBmgJaA9DCFb0h2ae3Pa/lIaUUpRoFUsyaBZHQKl7Fjin5zp1fZQoaAZoCWgPQwj+8V61MuH9v5SGlFKUaBVLMmgWR0CpfVXX7LuAdX2UKGgGaAloD0MIbW+3JAfMAcCUhpRSlGgVSzJoFkdAqX0YIKMNt3V9lChoBmgJaA9DCL5ojxfS4f2/lIaUUpRoFUsyaBZHQKl827Pppvh1fZQoaAZoCWgPQwgaiGUzh0QDwJSGlFKUaBVLMmgWR0CpfJj1XeWOdX2UKGgGaAloD0MIXW4w1GGF+b+UhpRSlGgVSzJoFkdAqX50n9ehPHV9lChoBmgJaA9DCPhT46WbpAjAlIaUUpRoFUsyaBZHQKl+Ns67ulZ1fZQoaAZoCWgPQwjw+WGE8Cj6v5SGlFKUaBVLMmgWR0CpffpYLb5/dX2UKGgGaAloD0MITSzwFd169b+UhpRSlGgVSzJoFkdAqX23ied073V9lChoBmgJaA9DCN8a2CrBIvq/lIaUUpRoFUsyaBZHQKl/kPMB6rx1fZQoaAZoCWgPQwhEpnwIqgb5v5SGlFKUaBVLMmgWR0Cpf1MUh3aBdX2UKGgGaAloD0MIRga5izBF/r+UhpRSlGgVSzJoFkdAqX8WtOmBOHV9lChoBmgJaA9DCNy7Bn3p7em/lIaUUpRoFUsyaBZHQKl+09f1Hvt1fZQoaAZoCWgPQwhzLzArFCn/v5SGlFKUaBVLMmgWR0CpgKIf0VafdX2UKGgGaAloD0MI5pKq7SZYDMCUhpRSlGgVSzJoFkdAqYBkVYZEUnV9lChoBmgJaA9DCGsRUUzewAPAlIaUUpRoFUsyaBZHQKmAJ9qDbrV1fZQoaAZoCWgPQwgGDf0TXKzzv5SGlFKUaBVLMmgWR0Cpf+T6i0v5dX2UKGgGaAloD0MIEeM1r+os8r+UhpRSlGgVSzJoFkdAqYG7lJYkmnV9lChoBmgJaA9DCLvSMlLvaQPAlIaUUpRoFUsyaBZHQKmBfdO6/Zd1fZQoaAZoCWgPQwjxnC0gtG4XwJSGlFKUaBVLMmgWR0CpgUFY2bXpdX2UKGgGaAloD0MIms+52/WSCMCUhpRSlGgVSzJoFkdAqYD+mvW6LHV9lChoBmgJaA9DCBcP7zmwfAbAlIaUUpRoFUsyaBZHQKmC0gVXV9Z1fZQoaAZoCWgPQwgUBfpEnqTxv5SGlFKUaBVLMmgWR0CpgpRdQfp2dX2UKGgGaAloD0MIrn5skh9RCsCUhpRSlGgVSzJoFkdAqYJX9UCJXXV9lChoBmgJaA9DCPEO8KSFexHAlIaUUpRoFUsyaBZHQKmCFTYukDZ1fZQoaAZoCWgPQwigqGxYU9nqv5SGlFKUaBVLMmgWR0Cpg+q3NLUTdX2UKGgGaAloD0MIVRaFXRQ9DMCUhpRSlGgVSzJoFkdAqYOs6JZW73V9lChoBmgJaA9DCI9v7xr05fK/lIaUUpRoFUsyaBZHQKmDcG0NSZV1fZQoaAZoCWgPQwiqLAq7KBoHwJSGlFKUaBVLMmgWR0Cpgy1uivgWdX2UKGgGaAloD0MIghspWyRNA8CUhpRSlGgVSzJoFkdAqYUI//vOQnV9lChoBmgJaA9DCNUFvMywEQfAlIaUUpRoFUsyaBZHQKmEy2itaIN1fZQoaAZoCWgPQwgqG9ZUFgX6v5SGlFKUaBVLMmgWR0CphI7RfF72dX2UKGgGaAloD0MIYWu28pI/F8CUhpRSlGgVSzJoFkdAqYRL/Ot4iXV9lChoBmgJaA9DCOp7DcFxWf6/lIaUUpRoFUsyaBZHQKmGJZrYXft1fZQoaAZoCWgPQwhwe4LEdtcIwJSGlFKUaBVLMmgWR0Cphefh2nsLdX2UKGgGaAloD0MI/dgkP+JX97+UhpRSlGgVSzJoFkdAqYWrX4CZGHV9lChoBmgJaA9DCL4ViQlqePu/lIaUUpRoFUsyaBZHQKmFaHLRrrR1fZQoaAZoCWgPQwjFG5lH/uD1v5SGlFKUaBVLMmgWR0Cphz0r08NhdX2UKGgGaAloD0MI1T+IZMjx8b+UhpRSlGgVSzJoFkdAqYb/Vf/m1nV9lChoBmgJaA9DCJtattYXyfG/lIaUUpRoFUsyaBZHQKmGwtnPE891fZQoaAZoCWgPQwiw5CoWv2kTwJSGlFKUaBVLMmgWR0Cphn/eLvTgdX2UKGgGaAloD0MIvRk1XyUf8L+UhpRSlGgVSzJoFkdAqYhVJvo/zXV9lChoBmgJaA9DCEyMZfolovG/lIaUUpRoFUsyaBZHQKmIF2wFC9h1fZQoaAZoCWgPQwhxkBDlC9riv5SGlFKUaBVLMmgWR0Cph9r0SRKZdX2UKGgGaAloD0MI+Z0mM94W9r+UhpRSlGgVSzJoFkdAqYeYQHzH0nV9lChoBmgJaA9DCChHAaJgxuu/lIaUUpRoFUsyaBZHQKmJb50r9VF1fZQoaAZoCWgPQwiC4zJuakAIwJSGlFKUaBVLMmgWR0CpiTHF5v9+dX2UKGgGaAloD0MIpbvrbMjfC8CUhpRSlGgVSzJoFkdAqYj1TWGyonV9lChoBmgJaA9DCJTeN772TPe/lIaUUpRoFUsyaBZHQKmIsmmce8x1fZQoaAZoCWgPQwjdmJ6wxEP0v5SGlFKUaBVLMmgWR0Cpiocnuy/sdX2UKGgGaAloD0MI2Lj+XZ+58r+UhpRSlGgVSzJoFkdAqYpJacI7eXV9lChoBmgJaA9DCF5HHLKBdPa/lIaUUpRoFUsyaBZHQKmKDObiIcl1fZQoaAZoCWgPQwhXJZF9kGXwv5SGlFKUaBVLMmgWR0Cpicn9vS+hdX2UKGgGaAloD0MIwOyePCyU9L+UhpRSlGgVSzJoFkdAqYuhVIZqEnV9lChoBmgJaA9DCB9N9WT+kfK/lIaUUpRoFUsyaBZHQKmLY5wwTM91fZQoaAZoCWgPQwiXi/hOzFoGwJSGlFKUaBVLMmgWR0Cpiycc2itadX2UKGgGaAloD0MI+pekMsWcD8CUhpRSlGgVSzJoFkdAqYrkOqebu3V9lChoBmgJaA9DCNoaEYyDy+W/lIaUUpRoFUsyaBZHQKmMvkOqebx1fZQoaAZoCWgPQwgAcVevIiPnv5SGlFKUaBVLMmgWR0CpjICHRCyAdX2UKGgGaAloD0MIZof4hy09+7+UhpRSlGgVSzJoFkdAqYxEBOpKjHV9lChoBmgJaA9DCGqHvyZr1P+/lIaUUpRoFUsyaBZHQKmMAQ+2Vml1fZQoaAZoCWgPQwhklGdeDlsJwJSGlFKUaBVLMmgWR0Cpjdi97F85dX2UKGgGaAloD0MIA5mdRe9U+b+UhpRSlGgVSzJoFkdAqY2bAN5MUXV9lChoBmgJaA9DCIjZy7bTVgXAlIaUUpRoFUsyaBZHQKmNXlEJBxB1fZQoaAZoCWgPQwiduByvQNQJwJSGlFKUaBVLMmgWR0CpjRtvn8sMdX2UKGgGaAloD0MIc/bOaKvS8r+UhpRSlGgVSzJoFkdAqY93cDbJwXV9lChoBmgJaA9DCLtkHCPZww3AlIaUUpRoFUsyaBZHQKmPOoUi6hB1fZQoaAZoCWgPQwj6uDZUjPPov5SGlFKUaBVLMmgWR0Cpjv7sniNsdX2UKGgGaAloD0MIcqYJ208G87+UhpRSlGgVSzJoFkdAqY68+kgwGnV9lChoBmgJaA9DCED4UKIljwHAlIaUUpRoFUsyaBZHQKmRQCIUJv51fZQoaAZoCWgPQwjBqKROQJMDwJSGlFKUaBVLMmgWR0CpkQMTN+spdX2UKGgGaAloD0MIMPDce7gECcCUhpRSlGgVSzJoFkdAqZDHdsSCe3V9lChoBmgJaA9DCFt8CoDxDALAlIaUUpRoFUsyaBZHQKmQhU83dbh1fZQoaAZoCWgPQwju6eqOxfbzv5SGlFKUaBVLMmgWR0CpkwqveP7vdX2UKGgGaAloD0MIEXFzKhlAAMCUhpRSlGgVSzJoFkdAqZLNxwQ18HV9lChoBmgJaA9DCFUzaykg7fK/lIaUUpRoFUsyaBZHQKmSklme18d1fZQoaAZoCWgPQwjDZKpgVJIHwJSGlFKUaBVLMmgWR0CpklBakhzOdX2UKGgGaAloD0MIRwN4CySoDcCUhpRSlGgVSzJoFkdAqZTsUoKD03V9lChoBmgJaA9DCDtvY7MjFQPAlIaUUpRoFUsyaBZHQKmUr4Pf8/F1fZQoaAZoCWgPQwiWzRySWqgBwJSGlFKUaBVLMmgWR0CplHPmozeodX2UKGgGaAloD0MIYp8AipGFCsCUhpRSlGgVSzJoFkdAqZQx7HAAQ3V9lChoBmgJaA9DCIrIsIo3UgPAlIaUUpRoFUsyaBZHQKmWwnsLORl1fZQoaAZoCWgPQwih2Aqalhj0v5SGlFKUaBVLMmgWR0CploW6bvw3dX2UKGgGaAloD0MI4PYEie1uBMCUhpRSlGgVSzJoFkdAqZZKMYMvy3V9lChoBmgJaA9DCNXNxd/2BPq/lIaUUpRoFUsyaBZHQKmWCB19v0h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (349 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.1713755510747434, "std_reward": 0.7663173346352458, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T00:39:31.988562"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c469f57c977cd17e99dd7f0e8118bc44706233e4d8ea1ee6631343088b34988c
|
3 |
+
size 3049
|