--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: type: audio-classification name: Audio Classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - type: accuracy value: 0.89 name: Accuracy --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5321 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 5.3547 | 0.9912 | 28 | 1.1577 | 0.73 | | 2.8199 | 1.9823 | 56 | 0.7326 | 0.83 | | 2.0591 | 2.9735 | 84 | 0.6054 | 0.87 | | 1.5609 | 4.0 | 113 | 0.5425 | 0.89 | | 1.5001 | 4.9558 | 140 | 0.5321 | 0.89 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0 - Datasets 3.0.2 - Tokenizers 0.20.1