File size: 1,962 Bytes
07b6a45
 
 
 
 
 
e9d2278
07b6a45
e9d2278
 
07b6a45
 
 
 
 
 
e9d2278
07b6a45
e9d2278
07b6a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d2278
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
model-index:
- name: t5-small-mrqa
  results: []
datasets:
- enriquesaou/mrqa-squadded-sample
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/favcowboy/huggingface/runs/k381y37g)
# t5-small-mrqa

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co./google-t5/t5-small) on an MRQA sample.
It achieves the following results on the evaluation set:
- Loss: 0.8647

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.9991 | 357  | 0.9669          |
| 1.0947        | 1.9981 | 714  | 0.9170          |
| 0.9558        | 3.0    | 1072 | 0.8990          |
| 0.9558        | 3.9991 | 1429 | 0.8855          |
| 0.9023        | 4.9981 | 1786 | 0.8680          |
| 0.8684        | 6.0    | 2144 | 0.8680          |
| 0.8542        | 6.9991 | 2501 | 0.8668          |
| 0.8542        | 7.9925 | 2856 | 0.8647          |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1