File size: 2,713 Bytes
e08a06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: smerchi/Arabic-Morocco-Speech_To_Text
tags:
- generated_from_trainer
datasets:
- eniafou/data_cleverlytics
metrics:
- wer
model-index:
- name: Arabic-Morocco-Speech_To_Text-2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: clevelytics-INWI
      type: eniafou/data_cleverlytics
    metrics:
    - name: Wer
      type: wer
      value: 38.64455659697188
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Arabic-Morocco-Speech_To_Text-2

This model is a fine-tuned version of [smerchi/Arabic-Morocco-Speech_To_Text](https://huggingface.co./smerchi/Arabic-Morocco-Speech_To_Text) on the clevelytics-INWI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5924
- Wer: 38.6446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1426        | 1.0   | 30   | 0.5924          | 38.6446 |
| 0.044         | 2.0   | 60   | 0.6992          | 40.0865 |
| 0.0273        | 3.0   | 90   | 0.7299          | 41.5285 |
| 0.018         | 4.0   | 120  | 0.7187          | 39.9423 |
| 0.0072        | 5.0   | 150  | 0.7263          | 39.6539 |
| 0.0056        | 6.0   | 180  | 0.7556          | 40.1586 |
| 0.0037        | 7.0   | 210  | 0.7415          | 38.9329 |
| 0.0025        | 8.0   | 240  | 0.7665          | 38.9329 |
| 0.0011        | 9.0   | 270  | 0.7764          | 38.9329 |
| 0.0005        | 10.0  | 300  | 0.7848          | 39.9423 |
| 0.0004        | 11.0  | 330  | 0.7912          | 39.1492 |
| 0.0004        | 12.0  | 360  | 0.7953          | 39.3655 |
| 0.0004        | 13.0  | 390  | 0.7980          | 39.1492 |
| 0.0004        | 14.0  | 420  | 0.7998          | 39.2213 |
| 0.0003        | 15.0  | 450  | 0.8003          | 39.2213 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1